Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

He, Peijun

  • Google
  • 3
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Performance improvement and add-on functionalities to conventional lateral-flow devices using a laser direct-write patterning techniquecitations
  • 2017Laser manufactured paper devices for multiplexed detection of bacteria and their resistance to antibioticscitations
  • 2017Bacterial pathogen detection using laser-structured paper-based diagnostic sensorscitations

Places of action

Chart of shared publication
Galanis, Panagiotis
1 / 1 shared
Sones, Collin L.
1 / 1 shared
Katis, Ioannis
3 / 3 shared
Eason, Robert W.
3 / 65 shared
Keevil, Charles
1 / 9 shared
Sherwin, Susanna
1 / 1 shared
Sones, Collin
2 / 6 shared
Chart of publication period
2018
2017

Co-Authors (by relevance)

  • Galanis, Panagiotis
  • Sones, Collin L.
  • Katis, Ioannis
  • Eason, Robert W.
  • Keevil, Charles
  • Sherwin, Susanna
  • Sones, Collin
OrganizationsLocationPeople

document

Bacterial pathogen detection using laser-structured paper-based diagnostic sensors

  • He, Peijun
  • Katis, Ioannis
  • Eason, Robert W.
  • Sones, Collin
Abstract

Antimicrobial resistance has been recently identified by the World Health Organisation as a global threat and the need for novel diagnostic tools has been stressed. Current routine empirical antibiotic therapy protocol involves laboratory-based bacterial culture testing which can take up to 2-3 days. However, if the specific microbe species causing an infection can be quickly identified earlier on, it will allow doctors to prescribe a specific targeted antimicrobial instead of using a broad spectrum antimicrobial. <br/>In this work, we will present our preliminary results on the use of a laser-based fabrication technique of paper-based diagnostic tests via photo-polymerisation. The technique allows the creation of hydrophobic barriers through the whole thickness of the paper, and therefore the creation of fluidic channels and test zones in many different shapes, sizes and patterns. The laser-based direct-write procedure is non-contact, non-lithographic and mask-less and uses a low-power 405nm diode laser. The laser-structured paper can then be infused with chromogenic agars that allow the growth and detection of different bacteria.These devices are analogues of the commonly available agar plates and will allow the timely detection of multiple pathogens at the point-of-care. These paper-based diagnostic sensors fabricated via our laser-based technology are cheap, easy-to-use and allow rapid testing of either pathogens or their antimicrobial resistance to antibiotics.

Topics
  • impedance spectroscopy
  • laser emission spectroscopy