Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dimeo, R.

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002"Slow" Diffusive Motions in Tetracosane Monolayers Adsorbed on Graphitecitations

Places of action

Chart of shared publication
Neumann, D.
1 / 1 shared
Taub, H.
1 / 7 shared
Diama, A.
1 / 7 shared
Herwig, K. W.
1 / 6 shared
Volkmann, U. G.
1 / 4 shared
Hansen, F. Y.
1 / 5 shared
Criswell, L.
1 / 6 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Neumann, D.
  • Taub, H.
  • Diama, A.
  • Herwig, K. W.
  • Volkmann, U. G.
  • Hansen, F. Y.
  • Criswell, L.
OrganizationsLocationPeople

document

"Slow" Diffusive Motions in Tetracosane Monolayers Adsorbed on Graphite

  • Neumann, D.
  • Taub, H.
  • Diama, A.
  • Herwig, K. W.
  • Volkmann, U. G.
  • Hansen, F. Y.
  • Criswell, L.
  • Dimeo, R.
Abstract

Tetracosane (n-C_24H_50 or C24) monolayers serve as prototypes for studying the interfacial dynamics of more complex polymers. Using high-resolution quasielastic neutron scattering (QNS) and exfoliated graphite substrates, we have investigated the relatively slow diffusive motion in C24 monolayers on an energy/time scale of ~1-35 μeV ( ~0.1-1 ns). Upon heating, we first observe QNS in the crystalline phase at ~160 K. From the crystalline-to-smectic phase transition at ~215 K to ~230 K, we observe the QNS energy width to be dispersionless, consistent with molecular dynamics simulations showing rotational motion of the molecules about their long axis. At 260 K, the QNS energy width begins to increase with wave vector transfer, suggesting onset of bounded translational diffusion. We continue to observe QNS up to the monolayer melting temperature at ~340 K where our simulations indicate that the only motion slow enough to be visible within our energy window results from the creation of gauche defects in the molecules. <P />...

Topics
  • polymer
  • simulation
  • crystalline phase
  • molecular dynamics
  • phase transition
  • defect
  • interfacial
  • melting temperature
  • neutron scattering