Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Muszynski, L.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Methodology for Micromechanical Analysis of Wood Adhesive Bonds Using X-ray Computed Tomography and Numerical Modelingcitations

Places of action

Chart of shared publication
Nairn, J. A.
1 / 1 shared
Schwarzkopf, M.
1 / 1 shared
Xiao, X.
1 / 5 shared
Paris, J. L.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Nairn, J. A.
  • Schwarzkopf, M.
  • Xiao, X.
  • Paris, J. L.
OrganizationsLocationPeople

article

Methodology for Micromechanical Analysis of Wood Adhesive Bonds Using X-ray Computed Tomography and Numerical Modeling

  • Muszynski, L.
  • Nairn, J. A.
  • Schwarzkopf, M.
  • Xiao, X.
  • Paris, J. L.
Abstract

Structural performance of wood adhesive bonds depends on their ability to transfer stress across an interface of dissimilar materials, namely cell wall substance and cured polymeric adhesive. The interphase region of the bond consists of cell wall substance, voids, and voids filled with adhesive. In this study, an integrated method to numerically model micromechanical behavior of this system is described. The method includes micro-X-ray computed tomography (XCT) to define the three-dimensional (3D) structure of the bond on a micron scale. Tomography data were used as direct input to a micromechanics model. The model provided a 3D representation of equivalent strain and stress of the adhesive bond under load and, furthermore, integrated the microstructure of the interphase region into the solution. The model was validated using lap-shear test results from the same specimens that were scanned for XCT. Optical measurement and digital image correlation techniques provided full-field displacement data of the lap-shear specimen surfaces under load. Model simulation results compared favorably with measured surface displacements with spatial resolution in the micron range. The main advantage of the methodology is the accurate representation of the 3D microstructure of wood and the penetrating adhesive system in the numerical model.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • simulation
  • tomography
  • shear test
  • void
  • wood