People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nicolas, Jacques
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Atomically uniform Sn-rich GeSn semiconductors with 3.0-3.5 μ m room-temperature optical emission
Abstract
The simultaneous control of lattice strain, composition, and microstructure is crucial to establish high-quality, direct bandgap GeSn semiconductors. Herein, we demonstrate that multilayer growth with a gradual increase in composition is an effective process to minimize bulk and surface segregation and eliminate phase separation during epitaxy yielding a uniform Sn incorporation up to ∼18 at. %. Detailed atomistic studies using atom probe tomography reveal the presence of abrupt interfaces between monocrystalline GeSn layers with interfacial widths in the 1.5-2.5 nm range. Statistical analyses of 3-D atom-by-atom maps confirmed the absence of Sn precipitates and short-range atomic ordering. Despite the residual compressive strain of -1.3 %, the grown layers show clear room-temperature photoluminescence in the 3.0-3.5 μm wavelength range originating from the upper GeSn layer with the highest Sn content. This finding lays the groundwork to develop silicon-compatible mid-infrared photonic devices.