Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Asano, R.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013How do the extinction curves in galaxies evolve?citations

Places of action

Chart of shared publication
Nozawa, T.
1 / 6 shared
Takeuchi, T.
1 / 6 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Nozawa, T.
  • Takeuchi, T.
OrganizationsLocationPeople

document

How do the extinction curves in galaxies evolve?

  • Nozawa, T.
  • Takeuchi, T.
  • Asano, R.
Abstract

We investigate the evolution of extinction curves in galaxies based on our evolution model of grain size distribution. In this model, we considered various processes: dust formation by SNe II and AGB stars, dust destruction by SN shocks in the interstellar medium (ISM), metal accretion onto the surface of grains, shattering and coagulation. We find that the extinction curve is flat in the earliest stage of galaxy evolution because the grain size distribution is dominated by large (a & 0.1 µ m, where a is the grain radius) grains produced by stars. As the galaxy is enriched with dust, shattering becomes effective to produce a large abundance of small grains (a . 0.01 µ m). Then, the total surface area of grains per grain mass becomes large, and grain growth becomes effective at small grain radii, forming a bump at a ∼ 10-3 -10-2 µ m on the grain size distribution. Consequently, the extinction curve at ultraviolet (UV) wavelengths becomes steep, and a bump at 1/λ ∼ 4.5 µ m-1 (λ : wavelength) on the extinction curve becomes prominent. The galactic age when the extinction curve has the bump is roughly estimated as t ∼ (τSF /Gyr)1/2 Gyr, where τSF is the star formation timescale. Once coagulation becomes effective, the extinction curves become flatter, but the UV extinction remains overproduced when compared with the Milky Way extinction curve. This discrepancy can be resolved by introducing a stronger contribution of coagulation. Thus, an interplay between shattering and coagulation could be important to reproduce the Milky Way extinction curve. We conclude that the extinction curves of galaxies change drastically through the galaxy lifetime because the main dust processes that contribute to the grain size distribution change....

Topics
  • impedance spectroscopy
  • surface
  • grain
  • grain size
  • forming
  • grain growth