Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kangwa, Joseph

  • Google
  • 5
  • 4
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2018Suitability of Anthill Soil as a Supplementary Cementitious Material4citations
  • 2017Performance of Class F Pulverised Fuel Ash and Ground Granulated Blast Furnace Slag in Ternary Concrete Mixes1citations
  • 2017Permeability of Corncob Ash, Anthill soils and Rice husk replaced concretecitations
  • 2017Influence of Rice Husk Ash Density on the workability and strength of structural concrete11citations
  • 2016Suitability of Corncob Ash as a supplementary Cementitious Materialcitations

Places of action

Chart of shared publication
Kamau, J.
5 / 5 shared
Hirst, P.
5 / 5 shared
Ahmed, A.
5 / 16 shared
Hyndman, F.
1 / 1 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Kamau, J.
  • Hirst, P.
  • Ahmed, A.
  • Hyndman, F.
OrganizationsLocationPeople

article

Permeability of Corncob Ash, Anthill soils and Rice husk replaced concrete

  • Kamau, J.
  • Hirst, P.
  • Kangwa, Joseph
  • Ahmed, A.
Abstract

Durability of concrete is defined as its ability to resist any form of deterioration, allowing it to retain its original form and quality after exposure to the environment of its intended use. Permeability is the most important aspect of durability and service lives of concrete structures, and is measured by the ease with which a gas or liquid can get into and pass through concrete, or rate at which water under pressure can flow through interconnected voids within concrete. It has been suggested that pozzolanic reactions from Supplementary Cementitious Materials (SCMs) help in filling up pores using the Calcium Silicate Hydrate (C-S-H) gel that is formed during the secondary hydration of cement, through the reaction of calcium hydrixide [Ca(OH)2] with silicon dioxide (SiO2), which densifies the pore structure and transition zone, thereby reducing permeability from the packing effect of unreacted particles. This work investigated the water absorption performance of Corncob Ash (CCA), Anthill Soil (AHS) and Rice Husk Ash (RHA) concrete specimens. Tests were conducted on specimens that were found to have achieved the highest compressive strengths from strength tests and also on specimens that were made out of 30% (per cent) cement replacements. Results indicated that the water performance of all the three materials, including that of the ternary specimens of CCA and AHS were above those of the control specimens at highest compressive strength, and highlight the potential of using CCA, AHS and RHA at lower replacements to improve the durability of concrete.

Topics
  • impedance spectroscopy
  • pore
  • strength
  • cement
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • Silicon
  • permeability
  • void
  • Calcium
  • durability