Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maurya, Anuj

  • Google
  • 1
  • 1
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Ferroelectric superlattices at nano scale: A Theoretical Investigationcitations

Places of action

Chart of shared publication
Niranjan, Manish K.
1 / 10 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Niranjan, Manish K.
OrganizationsLocationPeople

document

Ferroelectric superlattices at nano scale: A Theoretical Investigation

  • Maurya, Anuj
  • Niranjan, Manish K.
Abstract

In ferroelctrics, material size scales play a vital role in deciding its properties. Modeling of nano scale ferroelectric superlattices require different approach than bulk sized ferroelctrics. At smaller scales, thickness becomes a important parameter that can cause variation in critical value of properties of material and to study them choice of appropriate order parameter becomes crucial. This report mainly focuses on approach using spontaneous polarization as order parameter. Variation of Polarization, susceptibility and transition critical temperature with relative thickness of layers of ferroelectric superlattice is shown along comparison with different approach such as total polarization as order parameter, first principle calculation and experimental data using pre-existing curves from references.The most commonly observed anomalous phenomenon of ferroelectric superlattices is that the remanent polarization is much larger than their single-phase thin films.In ferroelctrics, material size scales play a vital role in deciding its properties. Modeling of nano scale ferroelectric superlattices require different approach than bulk sized ferroelctrics. At smaller scales, thickness becomes a important parameter that can cause variation in critical value of properties of material and to study them choice of appropriate order parameter becomes crucial. This report mainly focuses on approach using spontaneous polarization as order parameter. Variation of Polarization, susceptibility and transition critical temperature with relative thickness of layers of ferroelectric superlattice is shown along comparison with different approach such as total polarization as order parameter, first principle calculation and experimental data using pre-existing curves from references.The most commonly observed anomalous phenomenon of ferroelectric superlattices is that the remanent polarization is much larger than their single-phase thin films. Going at very small scale of ferroelectric materials along with superlattice geomatry, one can see very interesting feature of it. In this type of structure, small variation in thickness of layers enhances dielectric constant and polarization of the sample. Going at very small scale of ferroelectric materials along with superlattice geomatry, one can see very interesting feature of it. In this type of structure, small variation in thickness of layers enhances dielectric constant and polarization of the sample.

Topics
  • impedance spectroscopy
  • phase
  • thin film
  • dielectric constant
  • susceptibility
  • critical temperature