Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Banerjee, Krishnarjuna

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Optimum discharge energy density at room temperature in relaxor K 1/2 Bi 1/2 TiO 3 for green energy harvestingcitations

Places of action

Chart of shared publication
Asthana, Saket
1 / 3 shared
Karuna Kumari, P.
1 / 1 shared
Niranjan, Manish K.
1 / 10 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Asthana, Saket
  • Karuna Kumari, P.
  • Niranjan, Manish K.
OrganizationsLocationPeople

article

Optimum discharge energy density at room temperature in relaxor K 1/2 Bi 1/2 TiO 3 for green energy harvesting

  • Asthana, Saket
  • Karuna Kumari, P.
  • Banerjee, Krishnarjuna
  • Niranjan, Manish K.
Abstract

Lead free polycrystalline K1/2Bi1/2TiO3 (KBT) was prepared by solid state reaction method. Experimentally observed frequencies of Raman modes signified its tetragonal phase and matched reasonably well with theoretically calculated values. The relaxor nature of this material was observed in the temperature dependent real part of permittivity and dielectric loss curve. The value of the degree of diffusiveness was estimated from the modified Curie-Weiss law, which is 1.99, confirmed its relaxor behavior. The validation of this behavior was justified by the Vogel-Fülcher relation. The shoulder in the imaginary part of the modulus (M") and permittivity (Ԑ") spectra revealed the presence of polar nano regions (PNRs). The evidence of PNRs was detectable above freezing temperature which became weaker when the temperature exceeded Tm (temperature at the maximum of dielectric constant). Electric field induced polarization and strain curve showed the stabilization of long range ferroelectric order of the specimen at room temperature. Moreover, we obtained the discharge energy density and strain of 0.46 J/cm3 and 0.12%, respectively, at the maximum application of the electric field of 115 kV/cm at room temperature.

Topics
  • density
  • impedance spectroscopy
  • energy density
  • phase
  • dielectric constant