People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kobayashi, Ken
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
Places of action
Organizations | Location | People |
---|
document
Observation of solar flare hard x-ray spectra using CdTe detectors
Abstract
We present the design and flight results of a balloon-borne hard X-ray detector system for observing high-resolution spectra of solar flares. The instrument is designed to achieve a 3 keV energy resolution over the energy range of 15-120 keV. The instrument uses sixteen 10 × 10 × 0.5 mm cadmium telluride (CdTe) detectors with indium electrodes that act as Schottky barriers to minimize leak current and allow a high bias voltage. Pre-flight tests confirmed that all detectors exceeded the target 3 keV resolution. The pressurized detector vessel uses a low-density (0.1 g/cm^2) CFRP/Rohacell window. The detectors are passively shielded by 2 mm of lead, and field of view is constrained with a graded-Z collimator. The vertical angle of the detectors are fixed at 45 degrees, and the azimuth angle of the entire gondola is controlled using a signal from a sun position sensor. Specially developed electronics accumulate a 128 channel spectrum for each detector, which is read through telemetry every 0.54 seconds. These detectors need to be cooled down to 0 degrees C for optimal performance; due to weight constraints this was achieved purely by radiative cooling, using the detector enclosure surface as a radiator and by placing shields that minimize radiative heat input from the sun and earth while maximizing heat loss to the sky. The first flight of the instrument took place on August 29, 2001 and while no major flares were observed, we succeeded in detecting a small brightening (microflare). Detector temperature of -13 degrees C was achieved, and all systems performed as expected. The instrument was recovered successfully after the flight and a second flight is planned for May 2002. <P />...