Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

No-Cortes, Juliana

  • Google
  • 2
  • 5
  • 0

University of Malta

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Use of free CAD software for 3D printing individualized face masks based on face scans.citations
  • 2020Use of free CAD software for 3D printing individualized face masks based on face scans.citations

Places of action

Chart of shared publication
Attard, Nikolai
1 / 2 shared
Cortes, Arthur
1 / 2 shared
Ej, Sammut
1 / 1 shared
Galea, K.
1 / 1 shared
Ee, Alzoubi
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Attard, Nikolai
  • Cortes, Arthur
  • Ej, Sammut
  • Galea, K.
  • Ee, Alzoubi
OrganizationsLocationPeople

article

Use of free CAD software for 3D printing individualized face masks based on face scans.

  • No-Cortes, Juliana
Abstract

AIM:To describe a method of digitally customizing 3D-printed face mask designs using 3D face scans and free software. MATERIALS AND METHODS:The procedure of creating customized face masks initially involved importing and aligning STL files of face scans and mask components in free CAD software. The imported mask described in this article is composed of three different STL files (body, filter structure, and grid). The body of the mask was then edited to fit precisely into the face scan STL by using the software's offset tool, followed by adjustments and smoothening of the surfaces of the edges. The resulting customized body of the mask plus the filter and grid STL files were exported and 3D printed with polylactic acid (PLA) filament using a fused deposition modeling (FDM) 3D printer. For the purposes of comparison, a conventional 3D-printed mask (from the original STL files, without being customized for the face scan) was also 3D printed from the original STL files. Both face masks were tested on the same two volunteers. RESULTS:The customized 3D-printed face mask presented a higher adaptation compared with the conventional face mask. The area of facial contact matched the one digitally designed in the software. The 3D-printed grid could clip exactly into the filter, which in turn could be precisely screwed into the body of the face mask. CONCLUSION:Within the limitations of this technical report, the present findings suggest that customized 3D-printed face masks with enhanced adaptation can be digitally designed using face scans and free CAD software.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • collision-induced dissociation