People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jacobsen, Rasmus Elkjær
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Reconfigurable Water-Based Antennascitations
- 2021Water-based devices for advanced control of electromagnetic wavescitations
- 2021Water – A Microwave Material for Advanced Wave Control and Sensing
- 2020Mie Resonances in Water Spheres for Microwave Metamaterials and Antennas
- 2020Mie Resonances in Water Spheres for Microwave Metamaterials and Antennas
- 2020Continuous Heating Microwave System Based on Mie Resonancescitations
- 2020Continuous Heating Microwave System Based on Mie Resonancescitations
- 2019Mie Resonance-Based Continuous Heating Microwave Systems
- 2019Mie Resonance-Based Continuous Heating Microwave Systems
- 2019Fundamental Properties of Mie Resonances in Water Spherescitations
- 2019Fundamental Properties of Mie Resonances in Water Spherescitations
- 2019Fundamental Properties of Mie Resonances in Water Cylinders – TM and TE Case Studies
- 2019Fundamental Properties of Mie Resonances in Water Cylinders – TM and TE Case Studies
- 2018Effective Switching of Microwaves by Simple Water-Based Metasurfaces
- 2018Effective Switching of Microwaves by Simple Water-Based Metasurfaces
Places of action
Organizations | Location | People |
---|
article
Mie Resonances in Water Spheres for Microwave Metamaterials and Antennas
Abstract
All-dielectric metamaterials rely on high-permittivity inclusions, which support Mie resonances. At microwave frequencies, distilled water exhibits a relatively high permittivity with tunable dynamic properties that are interesting for microwave devices, although absorption in water reduces their efficiency. In this paper, we investigate the scattering and absorption of single water spheres of various sizes and temperatures. The study is based on analytical calculations of Mie resonances. We also investigate the balanced electric/magnetic dipole excitation for more directive scattering in the forward direction. Finally, we discuss the major differences and similarities between water spheres and water cylinders. The results can be used as guidelines for metamaterial-based components as well as for dielectric resonator antenna designs.