People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sluys, Bert
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Geometric effects on impact mitigation in architected auxetic metamaterialscitations
- 2024Modeling of progressive high-cycle fatigue in composite laminates accounting for local stress ratioscitations
- 2023A numerical framework for simulating progressive failure in composite laminates under high-cycle fatigue loadingcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method.citations
- 2022Modelling of capillary water absorption in sound and cracked concrete using a dual-lattice approachcitations
- 2022Verification, validation, and parameter study of a computational model for corrosion pit growth adopting the level-set method. Part IIcitations
- 2021Calcium phosphate cement reinforced with poly (vinyl alcohol) fiberscitations
- 2021A cohesive XFEM model for simulating fatigue crack growth under various load conditionscitations
- 2020A thermo-hydro-mechanical model for energy piles under cyclic thermal loadingcitations
- 2020An experimental and numerical investigation of sphere impact on alumina ceramiccitations
- 2019A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced compositescitations
- 2019Simulating brittle and ductile response of alumina ceramics under dynamic loadingcitations
- 2019Dynamic characterization of adobe in compressioncitations
- 2019A dispersive homogenization model for composites and its RVE existencecitations
- 2019A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloadingcitations
- 2019Efficient micromechanical analysis of fiber-reinforced composites subjected to cyclic loading through time homogenization and reduced-order modelingcitations
- 2019Dynamic simulation of masonry materials at different loading velocities using an updated damage delay algorithm of regularization
- 2018Cohesive zone and interfacial thick level set modeling of the dynamic double cantilever beam test of composite laminatecitations
- 2018Deformation to fracture evolution of a flexible polymer under split Hopkinson pressure bar loadingcitations
- 2018A viscosity regularized plasticity model for ceramicscitations
- 2017Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine bladescitations
- 2017Thick-level-set modeling of the dynamic double cantilever beam test
- 2017A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage modelcitations
- 2017On the modelling of mixed-mode discrete fracturecitations
- 2017Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy compositescitations
- 2016Simulation of dynamic behavior of quasi-brittle materials with new rate dependent damage modelcitations
- 2016Compressive response of multiple-particles-polymer systems at various strain ratescitations
Places of action
Organizations | Location | People |
---|
document
Dynamic simulation of masonry materials at different loading velocities using an updated damage delay algorithm of regularization
Abstract
Buildings and structures in many cities have recently been exposed to an increased number of highly dynamic hazards. These include not only floods and earthquakes but also man made threats such as ballistic impacts and blasts. Thus, the assessment of the dynamic performance of structures made of quasi-brittle materials must account also for high strain rate loadings. In engineering software, numerical simulations of dynamic failure processes are often carried out in a framework of damage mechanics, in which failure is interpreted as a degradation of the elastic material capacity. However, for many damage models, the link between the implemented numerical functions representing the corresponding physical mechanisms aimed is still a controversial issue. This is also the case because damage models suffer from a numerical pathology which prevents the objective evaluation of failure for different spatial discretization. To solve this issue, non local regularization algorithms are often used to solve mesh dependence, often at the expenses of complex identification procedures and non- trivial code implementation. Instead, a locally regularized rate dependent model has been developed by the authors for the static assessment of unbaked masonry materials made of clay sand and silt [1]. It adapts damage delay functions originally proposed in [2] in a local damage model developed for cementitious materials [3] based on the decomposition of the Dirichlet boundary conditions solved with an implicit solver. The regularization properties of the model were shown in [1] in statics. The regularization properties of the algorithm are analysed in this contribution for the dynamic problem of a bar uniaxially compressed at high velocity deformation rates. Furthermore, the physical background of the delay formulationis interpreted in light of the main failure processes commonly depicted for quasi-brittle materials in dynamic tests. In particular, the material parameters of the delay function in [1] are linked in this study to the bridging processes of micro-cracks starting from initial flaws inside the material and the resulting macro-crack development up to failure. Considering the physics shown in literaturefor quasi-brittle materials under multi-strain rate tests, the constant parameters in [1] are made functions of internal and environmental factors, namely material mineralogical properties and applied loading rates in this study. The resulting delay formulation produces an improvement in the capability of the model both to address the complete stress-strain curve of the response of traditional masonry materials subjected to a dynamic load and the rate of enhancement of the main mechanical parameters typical for these rate sensitive materials when subjected to multi-strain rates tests. This is shown in this paper by means of theoretical tests and practical applications with regards to the results of an experimental campaign performed by the authors on adobe specimens subjected to dynamic tests at three different strain rates, ranging from statics to Split Hopkinson bar tests.