People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Keulen, Fred
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Simultaneous topology and deposition direction optimization for Wire and Arc Additive Manufacturingcitations
- 2019A mold insert case study on topology optimized design for additive manufacturing
- 2019Topology optimization of an injection mold insert with additive manufacturing constraints
- 2019Improving the manufacturability of metal AM parts
- 2016Optimizing front metallization patternscitations
- 2011Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization
- 2008Modeling of shape memory alloy shells for design optimization
- 2008Sensitivity analysis of shape memory alloy shells
- 2007Gradient-based design optimization of shape memory alloy active catheters
- 2007Design optimization of shape memory alloy active structures using the R-phase transformation
- 2006Sensitivity Analysis and Optimization of a Shape Memory Alloy Gripper
- 2006Uncertainty-based Design Optimization of Shape Memory Alloy Microgripper using Combined Cycle-based Alternating Anti-optimization and Nested Parallel Computing
- 2006Sensitivity Analysis of Shape Memory Alloy Shells
- 2006Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parametriztion
- 2005Analysis and Design Techniques for Shape Memory Alloy Microactuators for Space Applications
Places of action
Organizations | Location | People |
---|
document
Topology optimization of an injection mold insert with additive manufacturing constraints
Abstract
This work presents the redesign of an injection molding metal insert to be prototyped by the selective laser melting (SLM) process. The case study has been topology optimized to minimize its total mass while keeping the maximum von Mises stress and maximum displacement under load condition below chosen thresholds. Particular attention has been given to properly select the design space for the topology optimization (TO), taking care both of the industrial requirements and the simplifications needed to run the TO code. While the main TO has been performed with a commercially available software, a secondary optimization has been tried with in-house code to address the problem of local heat accumulation during the SLM manufacturing. Heat accumulation is a well-known issue for design features like overhangs and thin sections, and can cause issues such as poor surface finish and dross formation. A novel TO formulation is therefore employed to control AM associated local overheating by imposing a thermal constraint. The “hotspot indicator” is integrated with the standard compliance minimization TO problem, and a new design of the mold insert without local overheating is produced. Finally, a comparison between the two TO redesigns is briefly discussed.