Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neto, Vf

  • Google
  • 2
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2011Performance of nanocrystalline diamond coated micromolding toolscitations
  • 2008Time-modulated chemical vapour deposition diamonf on mould making 2738 steel5citations

Places of action

Chart of shared publication
Oliveira, Msa
2 / 12 shared
Gracio, J.
2 / 19 shared
Ali, N.
1 / 10 shared
Chart of publication period
2011
2008

Co-Authors (by relevance)

  • Oliveira, Msa
  • Gracio, J.
  • Ali, N.
OrganizationsLocationPeople

document

Performance of nanocrystalline diamond coated micromolding tools

  • Oliveira, Msa
  • Gracio, J.
  • Neto, Vf
Abstract

The injection molding of small polymeric parts with features at the microscale are being an increased industry demand. Nevertheless, the production of mold tools with this level of features impose new constraint to mold producer's, namely the degree of the features acceptable tolerances and the consequent selection of the materials that can resist the wear that the polymeric material will impose. CVD diamond films present a set of properties (high hardness and wear resistance, high thermal conductivity, and high resistant to corrosion) that points it as an ideal candidate to surface engineer injection micromolding tools. Till now, the evaluation of diamond coatings on polymeric molding surface show evidence of a positive performance, nevertheless further research is required, namely the use of nanocrystalline diamond films on complex structured surfaces. In this work, it is presented the results of nanocrystalline diamond coated molding structures and an evaluation of their performance. Copyright © 2011 MS&T'11®.

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • wear resistance
  • mass spectrometry
  • hardness
  • injection molding
  • thermal conductivity
  • chemical vapor deposition