Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dirar, S.

  • Google
  • 4
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Design of reinforced concrete T-beams strengthened in shear with externally bonded FRP compositescitations
  • 2015Nonlinear finite element modelling and parametric study of CFRP shear-strengthened prestressed concrete girderscitations
  • 2013Precracked reinforced concrete t-beams repaired in shear with prestressed carbon fiber-reinforced polymer strapscitations
  • 2013Phased nonlinear finite-element analysis of precracked RC T-beams repaired in shear with CFRP sheetscitations

Places of action

Chart of shared publication
Qapo, M.
2 / 2 shared
Theofanous, Marios
1 / 24 shared
Elshafie, Mzeb
1 / 3 shared
Yang, J.
1 / 37 shared
Morley, Ct
1 / 2 shared
Lees, Jm
2 / 17 shared
Morley, C.
1 / 2 shared
Chart of publication period
2018
2015
2013

Co-Authors (by relevance)

  • Qapo, M.
  • Theofanous, Marios
  • Elshafie, Mzeb
  • Yang, J.
  • Morley, Ct
  • Lees, Jm
  • Morley, C.
OrganizationsLocationPeople

document

Design of reinforced concrete T-beams strengthened in shear with externally bonded FRP composites

  • Dirar, S.
  • Qapo, M.
  • Theofanous, Marios
Abstract

<p>Current design guidelines for concrete structures strengthened with externally bonded (EB) fibre-reinforced polymer (FRP) reinforcement do not differentiate between the shear design of rectangular and T-beams. Nonetheless, EB FRP shear-strengthened rectangular and T-beams can have significantly different behaviour. In rectangular beams, EB FRP reinforcement may be bonded to the full depth of the beam web and therefore can effectively join the tension and compression chords. On the other hand, the presence of the slab in T-beams limits the effective depth of the EB FRP reinforcement. This can result in current design guidelines overestimating the shear strength enhancement offered by the FRP reinforcement in the case of T-beams. This paper presents a design model for reinforced concrete (RC) T-beams strengthened in shear with EB FRP composites. In the proposed design model, the FRP contribution to shear resistance is based on the 45° truss analogy and the FRP strain at failure is derived from direct-pull test results from the published literature. The predictions of the proposed model, together with those of Concrete Society TR55 and ACI 440.2R-17, were evaluated using an experimental database comprising 48 RC T-beams. The proposed model had an average predicted-to-experimental shear strength enhancement ratio of 1.062 and a standard deviation of 0.470. The average predicted-to-experimental ratios of TR55 and ACI 440.2R-17 models were 1.139 and 1.277, respectively, with standard deviations of 0.498 and 0.642, respectively. Not only does the proposed model generate more consistent predictions, but it also has a greater conservative nature, providing fewer overestimated predictions compared to current international design guidance.</p>

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • composite