Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jansen, Hidde

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Incorporating Inductive Bias into Deep Learningcitations

Places of action

Chart of shared publication
Benedictus, Rinze
1 / 27 shared
Ewald, Vincentius
1 / 1 shared
Groves, Roger
1 / 29 shared
Goby, Xavier
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Benedictus, Rinze
  • Ewald, Vincentius
  • Groves, Roger
  • Goby, Xavier
OrganizationsLocationPeople

document

Incorporating Inductive Bias into Deep Learning

  • Benedictus, Rinze
  • Ewald, Vincentius
  • Groves, Roger
  • Goby, Xavier
  • Jansen, Hidde
Abstract

The near-term artificial intelligence, commonly referred as ‘weak AI’ in the last couple years was achieved thanks to the advances in machine learning (ML), particularly deep learning, which has currently the best in-class performance outperforming other machine learning algorithms. In the deep learning framework, many natural tasks such as object, image, and speech recognition that were impossible to be performed by classical ML algorithms in the previous decades can now be be done by typical home personal computer. Deep learning requires large amount of data that has to be rapidly collected (also known as ‘big data’) in order to create robust model parameters that are able to predict future occurrences of certain event. In some domains, a large dataset such as CIFAR-10, MNIST, or Kaggle exist already. However, in many other domains such as aircraft visual inspection, such a large dataset is not easily available and this clearly restricts deep learning to perform well to recognize material damage in aircraft structures. As many computer science researchers believe, we also think that in order to achieve a performance similar to human-level intelligence, AI could and should not start from scratch. Introducing an inductive bias into deep learning might be one solution to achieve that humanlevel intelligence. In this paper, we give an example how to incorporate aerospace domain knowledge into the development of deep learning algorithms. We performed a relatively simple procedure: we conducted fatigue testing of an aluminum plate that is typically used in aircraft fuselage and build a deep convolutional neural network that classifies crack length according to crack propagation curve obtained from fatigue test. The results of this network are then compared to the results of the same network that was not injected by domain knowledge

Topics
  • impedance spectroscopy
  • aluminium
  • crack
  • fatigue
  • fatigue testing
  • machine learning