People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Villegas, Irene Fernandez
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024On the Influence of Welding Parameters and Their Interdependence During Robotic Continuous Ultrasonic Welding of Carbon Fibre Reinforced Thermoplastics
- 2023Effect of Adherend Thickness on Near-Field Ultrasonic Welding of Single-Lap CF/LMPAEK Thermoplastic Composite Joints
- 2022Measurement of damage growth in ultrasonic spot welded joint
- 2018Effect of resin-rich bond line thickness and fibre migration on the toughness of unidirectional Carbon/PEEK jointscitations
- 2018Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite jointscitations
- 2018A study on amplitude transmission in ultrasonic welding of thermoplastic compositescitations
- 2018Interlaminar fracture toughness of 5HS Carbon/PEEK laminates. A comparison between DCB, ELS and mandrel peel testscitations
- 2018Hybrid welding of carbon-fiber reinforced epoxy based compositescitations
- 2017Effects of release media on the fusion bonding of carbon/PEEK laminatescitations
- 2016Hybrid welding of carbon-fibre reinforced epoxy based composites
- 2016Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
Places of action
Organizations | Location | People |
---|
document
Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
Abstract
Ultrasonic welding is a very promising technique for joining thermoplastic composite (TpC) components in aircraft primary structures [1, 2]. The potential introduction of new lightweight structures in civil aviation has been driving the change towards condition-based maintenance (CBM) as an alternative to the regular inspection interval approach [3]. In turn, CBM has been pushing forward the development of structural health monitoring (SHM) technology capable of reliably assessing the structural integrity of a component during flight or at pre-flight checks. Among all of them, Lamb wave techniques are widely recognised as some of the most promising approaches for SHM of composite structures [4].<br/>Accurate quantitative damage assessment can only be performed if ultrasonic response changes can be unambiguously correlated to specific damages. That correlation requires the distinction of benign features from damaging ones. Therefore, before designing an SHM system for any component it is first necessary to understand the influence of several intrinsic characteristics of the undamaged joints on Lamb wave propagation. In the case of TpC ultrasonically welded (UW) joints, the cross-section is characterised by a very thin (~ 0.05 mm) polymeric weld-line between the laminated adherends, and a region within the two laminate layers adjacent to the weld-line which is affected by partial fusion of the matrix during the welding process [1, 2]. Although this heat-affected zone does not have a separation surface as the weld-line, it is expected to have different elastic properties to the rest of laminate.<br/>Despite several computational and experimental investigations about Lamb-wave-based SHM of different types of composite structures, the interaction of Lamb waves with the unique properties of TpCUW joints has not been addressed yet. This paper presents the first experimental study about the influence of weld quality and adherend edge tapering on the propagation of Lamb waves through TpCUW single-lap joints. The main aim of this research is to understand how the guided wave interactions with the internal structure of TpC ultrasonic welds influence the scattering at a single-lap geometry. The conclusions can later be used to develop a model which will assist the design of a Lamb-wave-based SHM system for a TpC structure. The results from this study are also expected to provide some reverse-engineering insight on different weld qualities, ultimately contributing to the improvement of the manufacturing process of TpCUW joints.