People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Benedictus, Rinze
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Datacitations
- 2023Hierarchical Upscaling of Data-Driven Damage Diagnostics for Stiffened Composite Aircraft Structures
- 2023Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM datacitations
- 2023Analysis of Stochastic Matrix Crack Evolution in CFRP Cross-Ply Laminates under Fatigue Loadingcitations
- 2023Delamination Size Prediction for Compressive Fatigue Loaded Composite Structures Via Ultrasonic Guided Wave Based Structural Health Monitoring
- 2022On the Challenges of Upscaling Damage Monitoring Methodologies for Stiffened Composite Aircraft Panelscitations
- 2022How literature reviews influence the selection of fatigue analysis framework
- 2022Early fatigue damage accumulation of CFRP Cross-Ply laminates considering size and stress level effectscitations
- 2021Fusion-based damage diagnostics for stiffened composite panelscitations
- 2021Modeling and imaging of ultrasonic array inspection of side drilled holes in layered anisotropic mediacitations
- 2020Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veilscitations
- 2020Significantly enhanced structural integrity of adhesively bonded PPS and PEEK composite joints by rapidly UV-irradiating the substratescitations
- 2020The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veilscitations
- 2020Simulation of ultrasonic beam propagation from phased arrays in anisotropic media using linearly phased multi-Gaussian beamscitations
- 2020A gaussian beam based recursive stiffness matrix model to simulate ultrasonic array signals from multi-layered mediacitations
- 2019Systematic multiparameter design methodology for an ultrasonic health monitoring system for full-scale composite aircraft primary structurescitations
- 2019From thin to extra-thick adhesive layer thicknesses:Fracture of bonded joints under mode I loading conditionscitations
- 2018Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite jointscitations
- 2018Incorporating Inductive Bias into Deep Learning
- 2018Full-scale testing of an ultrasonic guided wave based structural health monitoring system for a thermoplastic composite aircraft primary structure
- 2018The stress ratio effect on plastic dissipation during fatigue crack growthcitations
- 2017Modelling of ultrasonic beam propagation from an array through transversely isotropic fibre reinforced composites using Multi Gaussian beams
- 2017Understanding mixed-mode cyclic fatigue delamination growth in unidirectional compositescitations
- 2016Thermo-viscoelastic analysis of GLAREcitations
- 2016Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
- 2016Effect of fiber-matrix adhesion on the creep behavior of CF/PPS compositescitations
- 2016Experimental investigation of the microscopic damage development at mode i fatigue delamination tips in carbon/epoxy laminatescitations
Places of action
Organizations | Location | People |
---|
document
Experimental characterisation of Lamb wave propagation through thermoplastic composite ultrasonic welds
Abstract
Ultrasonic welding is a very promising technique for joining thermoplastic composite (TpC) components in aircraft primary structures [1, 2]. The potential introduction of new lightweight structures in civil aviation has been driving the change towards condition-based maintenance (CBM) as an alternative to the regular inspection interval approach [3]. In turn, CBM has been pushing forward the development of structural health monitoring (SHM) technology capable of reliably assessing the structural integrity of a component during flight or at pre-flight checks. Among all of them, Lamb wave techniques are widely recognised as some of the most promising approaches for SHM of composite structures [4].<br/>Accurate quantitative damage assessment can only be performed if ultrasonic response changes can be unambiguously correlated to specific damages. That correlation requires the distinction of benign features from damaging ones. Therefore, before designing an SHM system for any component it is first necessary to understand the influence of several intrinsic characteristics of the undamaged joints on Lamb wave propagation. In the case of TpC ultrasonically welded (UW) joints, the cross-section is characterised by a very thin (~ 0.05 mm) polymeric weld-line between the laminated adherends, and a region within the two laminate layers adjacent to the weld-line which is affected by partial fusion of the matrix during the welding process [1, 2]. Although this heat-affected zone does not have a separation surface as the weld-line, it is expected to have different elastic properties to the rest of laminate.<br/>Despite several computational and experimental investigations about Lamb-wave-based SHM of different types of composite structures, the interaction of Lamb waves with the unique properties of TpCUW joints has not been addressed yet. This paper presents the first experimental study about the influence of weld quality and adherend edge tapering on the propagation of Lamb waves through TpCUW single-lap joints. The main aim of this research is to understand how the guided wave interactions with the internal structure of TpC ultrasonic welds influence the scattering at a single-lap geometry. The conclusions can later be used to develop a model which will assist the design of a Lamb-wave-based SHM system for a TpC structure. The results from this study are also expected to provide some reverse-engineering insight on different weld qualities, ultimately contributing to the improvement of the manufacturing process of TpCUW joints.