People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kulakov, Mykola
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021Effect of deformation heating on microstructure evolution during hot forging of Ti-6Al-4Vcitations
- 2020Microstructure evolution during hot deformation of REX734 austenitic stainless steelcitations
- 2018Effect of deformation-induced adiabatic heating on microstructure evolution during open-die screw press forging of Ti-6Al-4V.
Places of action
Organizations | Location | People |
---|
document
Effect of deformation-induced adiabatic heating on microstructure evolution during open-die screw press forging of Ti-6Al-4V.
Abstract
Microstructure evolution was investigated in a Ti-6Al-4V alloy having a coarse lath structure within large primary β grains, during hot forging using a 2100t screw press. A double truncated cone (DTC) sample, with 120 mm maximum diameter and XX height, was hot forged at 970°C (i.e. below β transus) to 60% of its height using the full capacity of the press (i.e. over 80% of the available energy), followed by air cooling. A finite element (FE) model of the forging process was also developed. A wide range of strains (i.e. 0.3 to 2.5) was generated in the mid-height of the DTC’s cross-section area . The adiabatic heating generated by the high deformation rate (i.e. up to 47s-1) caused a temperature rise by as much as 60°C which is enough to go beyond the β transus. Microstructural investigations of the final forgedmaterial show the presence of primary α and secondary α/ β phases. Primary α was uniformly distributed throughout the specimen’s cross-section disregarding the strain rate level during forging, implying XXX. Local disorientation due to forging induce deformation is observed within primary α grains. This implies thatthe deformation-induced adiabatic heating level was not high enough to increase the temperature significantly to trigger α-β phase transformation. This is in a good agreement with the results of FE model, as the predicted temperature rise induced by adiabatic heating was also not sufficient to keep the material above β-transus long enough to cause phase transformation.