People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baere, Ives De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Fatigue behaviour of thermoplastic glass/polypropylene composite cross-ply laminates : an experimental study with in-situ damage observations and numerical validationcitations
- 2023Experimental and numerical fatigue damage characterization in multidirectional thermoplastic glass/polypropylene laminates based on in-situ damage observationscitations
- 2023Relation between ASTM E606 specimen geometry and misalignment in strain-controlled fatigue testingcitations
- 2022Experimental and numerical damage characterization of glass/polypropylene multidirectional laminates under quasi-static loading conditioncitations
- 2021Long-term stiffness prediction of particle filled polymers by dynamic mechanical analysis : frequency sweep versus creep methodcitations
- 2021Multi scale digital image correlation for automatic edge detection of ply cracks in composite laminates under quasi static and fatigue loading
- 2020Influencing parameters on measurement accuracy in dynamic mechanical analysis of thermoplastic polymers and their compositescitations
- 2020Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)processing Timescitations
- 2017Electrospun nanofibers for highly toughened fibre reinforced polymer composite laminates
- 2017Improved fatigue delamination behaviour of composite laminates with electrospun thermoplastic nanofibrous interleaves using the Central Cut-Ply methodcitations
- 2016Damage-resistant composites using electrospun nanofibers: a multiscale analysis of the toughening mechanismscitations
- 2016TOWARDS DAMAGE RESISTANT COMPOSITES USING ELECTROSPUN NANOFIBERS: A MULTISCALE ANALYSIS OF THE TOUGHENING MECHANISMS
- 2016Interlaminar toughening of resin transfer molded laminates by electrospun polycaprolactone structures : effect of the interleave morphologycitations
- 2016Increasing the damage resistance of composites by interleaving them with electrospun nanofibrous veils
- 2015Ultrasonic polar scan imaging of fatigued fiber reinforced composites
- 2015Using a polyester binder for the interlaminar toughening of glass/epoxy composite laminates
- 2014Damage Signature of Fatigued Fabric Reinforced Plastics in the Pulsed Ultrasonic Polar Scan
- 2013Modifying the crack growth in a glass fiber reinforced epoxy by adding polyamide 6 nanofibers
- 2012The influence of polyamide 6 nanofibres on the mechanical properties of glass fibre/epoxy composites
- 2007Strain monitoring in thermoplastic composites with optical fiber sensors: embedding process, visualization with micro-tomography, and fatigue results
Places of action
Organizations | Location | People |
---|
document
Increasing the damage resistance of composites by interleaving them with electrospun nanofibrous veils
Abstract
Delamination between reinforcing plies is one of the most important failure mechanisms encountered in composite laminates during use. Interleaving composites with electrospun nanofibrous veils is proving to be a viable technique in order to increase the delamination resistance. The veils can easily be placed in the resin rich interlayers prior to production and do not require a dispersion in the matrix resin such as traditional particle toughening techniques. Furthermore, they are easily produced by electrospinning. Although there are many expected obvious benefits, the research on composites toughened with electrospun nanofibres is still very limited.We will give thorough insight into the toughening micromechanisms that are present in laminates interleaved with nanofibrous veils. The bridging of microcracks by nanofibres is shown to be the main mechanism resulting in an increased interlaminar fracture toughness. Upon crack extension, nanofibres will bridge the newly formed crack surfaces and take up energy by straining, yielding and fracture. Several parameters are identified which influence this nanofibre bridging, and thus the observed interlaminar fracture toughness. This allows us to accurately determine the crucial parameters and toughening mechanisms which is necessary for the design of advanced damage resistance composite materials.