People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ross, Glenn
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Scaling of piezoelectric in-plane NEMS : Towards nanoscale integration of AlN-based transducer on vertical sidewallscitations
- 2024Electromigration Reliability of Cu3Sn Microbumps for 3D Heterogeneous Integration
- 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabricationcitations
- 2024Thermal Boundary Conductance of Direct Bonded Aluminum Nitride to Silicon Interfacescitations
- 2024Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnectscitations
- 2023Impact of Inherent Design Limitations for Cu–Sn SLID Microbumps on Its Electromigration Reliability for 3D ICscitations
- 2023Achieving low-temperature wafer level bonding with Cu-Sn-In ternary at 150 °Ccitations
- 2023Co, In, and Co–In alloyed Cu6Sn5 interconnects: Microstructural and mechanical characteristicscitations
- 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMScitations
- 2022Investigation of the microstructural evolution and detachment of Co in contact with Cu–Sn electroplated silicon chips during solid-liquid interdiffusion bondingcitations
- 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMScitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding process: Understanding process dependent thermomechanical stresscitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding processcitations
- 2022Aluminium corrosion in power semiconductor devicescitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Wafer Level Solid Liquid Interdiffusion Bondingcitations
- 2021Stability and residual stresses of sputtered wurtzite AlScN thin filmscitations
- 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabricationcitations
- 2021A humidity-induced novel failure mechanism in power semiconductor diodescitations
- 2021Low-temperature Metal Bonding for Optical Device Packagingcitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020MOCVD Al(Ga)N Insulator for Alternative Silicon-On-Insulator Structurecitations
- 2020Metalorganic chemical vapor deposition of aluminum nitride on vertical surfacescitations
- 2019Intermetallic Void Formation in Cu-Sn Micro-Connects
- 2019The Role of Ultrafine Crystalline Behavior and Trace Impurities in Copper on Intermetallic Void Formationcitations
- 2018Process Integration and Reliability of Wafer Level SLID Bonding for Poly-Si TSV capped MEMScitations
- 2018The effect of platinum contact metallization on Cu/Sn bondingcitations
- 2018Stability of Piezoelectric Al1-xScxN Thin Films
- 2017XRD and ToF-SIMS study of intermetallic void formation in Cu-Sn micro-connectscitations
- 2017Gigahertz scanning acoustic microscopy analysis of voids in Cu-Sn micro-connectscitations
- 2017Key parameters influencing Cu-Sn interfacial void formation
- 2016Void formation and its impact on Cu-Sn intermetallic compound formationcitations
- 2014Void formation in Cu-Sn SLID bonding for MEMScitations
Places of action
Organizations | Location | People |
---|
document
Stability of Piezoelectric Al1-xScxN Thin Films
Abstract
Since the discovery of the "anomalous" piezoelectric effect in Sc-doped AlN by Akiyama et al. [1] in 2009, there has been significant interest in Al<sub>1−x</sub>Sc<sub>x</sub>N thin films. The increase of the piezoelectric coefficients has been confirmed to be an intrinsic alloying effect and due to the softening of the lattice [2–4]. AlScN films have been studied e.g. for energy harvesting [3,5], PMUTs [6], RF filters [7], and as tunable layers in optoelectronics [8]. Efforts have been made in volume production of AlScN films [9]. The focus of the research has been on optimizing the piezoelectric properties [1,5,8,10–12]. The reported optimal fraction of Sc is 27%–43%. However, the latest published research has focused on Sc-fractions of less than 30%. The possible phases of the AlScN system are known as wurtzite (w) and rock-salt (c). However, at which Sc-concentration the phase change begins from piezoelectric w-AlScN to non-piezoelectric c-AlScN, is somewhat unclear, as shown in Fig. 1. Moreover, it is unclear how wide the two-phase mixture range is. Studies show the transition occurring at Sc-fraction of 22% [13] to 41% [1]. Moreover, the crystal quality is degraded with increasing Sc content [12,14-16].<br/>In addition, mass separation by spinodal decomposition has been observed experimentally and theoretically [8,13,16]. This can lead to Al and Sc rich areas and to the formation of c-AlScN in films with even lower Sc-concentrations. The onset of spinodal decomposition at 1 100 K is at ca. 6% Sc-fraction according to thermodynamic simulations. However, epitaxial strain increases the allowed amount of Sc. When w-AlScN is strained on AlN, w-AlScN is stable up to 40%. Decomposition has not been observed in all experimental studies probably due to the nature of sputter deposition. Low growth temperatures limit kinetically the diffusion driven decomposition. However, studies have not evaluated the stability of w-AlScN. Almost all studies have focused on as-deposited sputtered films. As sputtering can result in nonequilibrium films, it is possible that the microstructure of w-AlScN changes to a more stable one due to high temperatures in processing or during use. The possible issue is loss of texture or formation of new phases with no or reduced piezoelectricity.<br/>In this study 1 μm thick AlScN samples with Sc-fraction of 30% are sputtered at 450 °C directly on (100) Si. The samples are annealed for 5 h at 400, 600, 850 and 1000 °C in order to induce and determine the temperature threshold for possible changes. Afterwards the microstructure of the samples is characterized with XRD and possible decomposition products are detected with RGA. SEM and EDX is used to study the morphology and composition of the films before and after annealing. The results show that AlScN thin films are stable in annealing. The XRD results (Fig. 2) confirm that the samples are c-axis oriented w-AlScN and show no changes after annealing. The RGA test showed no significant decomposition. The EDX results did not show any mass separation. However, the SEM micrographs (Fig. 3) show changes in the topography of the film after annealing.