Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ross, Glenn

  • Google
  • 35
  • 65
  • 389

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (35/35 displayed)

  • 2024Scaling of piezoelectric in-plane NEMS : Towards nanoscale integration of AlN-based transducer on vertical sidewalls1citations
  • 2024Electromigration Reliability of Cu3Sn Microbumps for 3D Heterogeneous Integrationcitations
  • 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabrication4citations
  • 2024Thermal Boundary Conductance of Direct Bonded Aluminum Nitride to Silicon Interfaces4citations
  • 2024Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnects2citations
  • 2023Impact of Inherent Design Limitations for Cu–Sn SLID Microbumps on Its Electromigration Reliability for 3D ICs16citations
  • 2023Achieving low-temperature wafer level bonding with Cu-Sn-In ternary at 150 °C14citations
  • 2023Co, In, and Co–In alloyed Cu6Sn5 interconnects: Microstructural and mechanical characteristics18citations
  • 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMS6citations
  • 2022Investigation of the microstructural evolution and detachment of Co in contact with Cu–Sn electroplated silicon chips during solid-liquid interdiffusion bonding6citations
  • 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMS4citations
  • 2022Finite element simulation of solid-liquid interdiffusion bonding process: Understanding process dependent thermomechanical stress10citations
  • 2022Finite element simulation of solid-liquid interdiffusion bonding process10citations
  • 2022Aluminium corrosion in power semiconductor devices6citations
  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Wafer Level Solid Liquid Interdiffusion Bonding16citations
  • 2021Stability and residual stresses of sputtered wurtzite AlScN thin films33citations
  • 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabrication16citations
  • 2021A humidity-induced novel failure mechanism in power semiconductor diodes17citations
  • 2021Low-temperature Metal Bonding for Optical Device Packaging7citations
  • 2020The impact of residual stress on resonating piezoelectric devices29citations
  • 2020The impact of residual stress on resonating piezoelectric devices29citations
  • 2020MOCVD Al(Ga)N Insulator for Alternative Silicon-On-Insulator Structure1citations
  • 2020Metalorganic chemical vapor deposition of aluminum nitride on vertical surfaces12citations
  • 2019Intermetallic Void Formation in Cu-Sn Micro-Connectscitations
  • 2019The Role of Ultrafine Crystalline Behavior and Trace Impurities in Copper on Intermetallic Void Formation18citations
  • 2018Process Integration and Reliability of Wafer Level SLID Bonding for Poly-Si TSV capped MEMS4citations
  • 2018The effect of platinum contact metallization on Cu/Sn bonding7citations
  • 2018Stability of Piezoelectric Al1-xScxN Thin Filmscitations
  • 2017XRD and ToF-SIMS study of intermetallic void formation in Cu-Sn micro-connects4citations
  • 2017Gigahertz scanning acoustic microscopy analysis of voids in Cu-Sn micro-connects6citations
  • 2017Key parameters influencing Cu-Sn interfacial void formationcitations
  • 2016Void formation and its impact on Cu-Sn intermetallic compound formation52citations
  • 2014Void formation in Cu-Sn SLID bonding for MEMS5citations

Places of action

Chart of shared publication
Paulasto-Kröckel, Mervi
22 / 31 shared
Miikkulainen, Ville
1 / 28 shared
Gabrelian, Artem
2 / 2 shared
Windemuth, Thilo
1 / 1 shared
Kögel, Michael
1 / 1 shared
Vuorinen, Vesa
20 / 48 shared
Tiwary, Nikhilendu
6 / 9 shared
Brand, Sebastian
1 / 5 shared
Grosse, Christian
1 / 4 shared
Bespalova, Kristina
6 / 8 shared
Suihkonen, Sami
4 / 25 shared
Nieminen, Tarmo
2 / 2 shared
Koskinen, Tomi
1 / 4 shared
Kornienko, Vladimir
1 / 2 shared
Golim, Obert
3 / 4 shared
Wernicke, Tobias
1 / 3 shared
Pawlak, Marta
1 / 2 shared
Paulasto-Kröckel, M.
6 / 12 shared
Emadi, Fahimeh
2 / 6 shared
Dong, Hongqun
5 / 9 shared
Gabrelian, Gabrelian
1 / 1 shared
Paulasto-Krockel, Mervi
5 / 10 shared
Peters, J. H.
1 / 1 shared
Ross, Robert
1 / 2 shared
Koopmans, G.
1 / 1 shared
Jormanainen, J.
2 / 2 shared
Leppänen, Joonas
2 / 2 shared
Forsström, A.
1 / 1 shared
Ingman, J.
2 / 2 shared
Kaminski, N.
1 / 2 shared
Hanf, M.
1 / 2 shared
Karuthedath, Cyril Baby
3 / 8 shared
Mertin, Stefan
3 / 6 shared
Österlund, Elmeri
6 / 8 shared
Pensala, Tuomas
6 / 17 shared
Karuthedath, Cyril
2 / 3 shared
Thanniyil Sebastian, Abhilash
2 / 5 shared
Hotchkiss, J.
1 / 1 shared
Kaaos, J.
1 / 1 shared
Trebala, Michal
1 / 3 shared
Caro, Miguel A.
1 / 22 shared
Hollmann, Andreas
1 / 1 shared
Genzel, Christoph
1 / 6 shared
Meixner, Matthias
1 / 3 shared
Žukauskaitė, Agnė
1 / 7 shared
Koppinen, Panu
1 / 1 shared
Klaus, Manuela
1 / 5 shared
Sebastian, Abhilash Thanniyil
1 / 2 shared
Danilewsky, Andreas
1 / 6 shared
Lankinen, Aapo
1 / 3 shared
Broas, Mikael
1 / 6 shared
Tuomi, Turkka
1 / 1 shared
Luntinen, Ville
1 / 1 shared
Tilli, Markku
1 / 1 shared
Kuisma, Heikki
1 / 1 shared
Torkkeli, Altti
1 / 2 shared
Malmberg, Per
1 / 6 shared
Viljanen, Heikki
1 / 2 shared
Decker, James
1 / 1 shared
Rautiainen, Antti
1 / 2 shared
Petzold, M.
2 / 38 shared
Krause, M.
1 / 25 shared
Reissaus, S.
1 / 1 shared
Brand, S.
1 / 8 shared
Xu, Hongbo
1 / 3 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017
2016
2014

Co-Authors (by relevance)

  • Paulasto-Kröckel, Mervi
  • Miikkulainen, Ville
  • Gabrelian, Artem
  • Windemuth, Thilo
  • Kögel, Michael
  • Vuorinen, Vesa
  • Tiwary, Nikhilendu
  • Brand, Sebastian
  • Grosse, Christian
  • Bespalova, Kristina
  • Suihkonen, Sami
  • Nieminen, Tarmo
  • Koskinen, Tomi
  • Kornienko, Vladimir
  • Golim, Obert
  • Wernicke, Tobias
  • Pawlak, Marta
  • Paulasto-Kröckel, M.
  • Emadi, Fahimeh
  • Dong, Hongqun
  • Gabrelian, Gabrelian
  • Paulasto-Krockel, Mervi
  • Peters, J. H.
  • Ross, Robert
  • Koopmans, G.
  • Jormanainen, J.
  • Leppänen, Joonas
  • Forsström, A.
  • Ingman, J.
  • Kaminski, N.
  • Hanf, M.
  • Karuthedath, Cyril Baby
  • Mertin, Stefan
  • Österlund, Elmeri
  • Pensala, Tuomas
  • Karuthedath, Cyril
  • Thanniyil Sebastian, Abhilash
  • Hotchkiss, J.
  • Kaaos, J.
  • Trebala, Michal
  • Caro, Miguel A.
  • Hollmann, Andreas
  • Genzel, Christoph
  • Meixner, Matthias
  • Žukauskaitė, Agnė
  • Koppinen, Panu
  • Klaus, Manuela
  • Sebastian, Abhilash Thanniyil
  • Danilewsky, Andreas
  • Lankinen, Aapo
  • Broas, Mikael
  • Tuomi, Turkka
  • Luntinen, Ville
  • Tilli, Markku
  • Kuisma, Heikki
  • Torkkeli, Altti
  • Malmberg, Per
  • Viljanen, Heikki
  • Decker, James
  • Rautiainen, Antti
  • Petzold, M.
  • Krause, M.
  • Reissaus, S.
  • Brand, S.
  • Xu, Hongbo
OrganizationsLocationPeople

document

Stability of Piezoelectric Al1-xScxN Thin Films

  • Paulasto-Kröckel, Mervi
  • Ross, Glenn
  • Österlund, Elmeri
Abstract

Since the discovery of the "anomalous" piezoelectric effect in Sc-doped AlN by Akiyama et al. [1] in 2009, there has been significant interest in Al<sub>1−x</sub>Sc<sub>x</sub>N thin films. The increase of the piezoelectric coefficients has been confirmed to be an intrinsic alloying effect and due to the softening of the lattice [2–4]. AlScN films have been studied e.g. for energy harvesting [3,5], PMUTs [6], RF filters [7], and as tunable layers in optoelectronics [8]. Efforts have been made in volume production of AlScN films [9]. The focus of the research has been on optimizing the piezoelectric properties [1,5,8,10–12]. The reported optimal fraction of Sc is 27%–43%. However, the latest published research has focused on Sc-fractions of less than 30%. The possible phases of the AlScN system are known as wurtzite (w) and rock-salt (c). However, at which Sc-concentration the phase change begins from piezoelectric w-AlScN to non-piezoelectric c-AlScN, is somewhat unclear, as shown in Fig. 1. Moreover, it is unclear how wide the two-phase mixture range is. Studies show the transition occurring at Sc-fraction of 22% [13] to 41% [1]. Moreover, the crystal quality is degraded with increasing Sc content [12,14-16].<br/>In addition, mass separation by spinodal decomposition has been observed experimentally and theoretically [8,13,16]. This can lead to Al and Sc rich areas and to the formation of c-AlScN in films with even lower Sc-concentrations. The onset of spinodal decomposition at 1 100 K is at ca. 6% Sc-fraction according to thermodynamic simulations. However, epitaxial strain increases the allowed amount of Sc. When w-AlScN is strained on AlN, w-AlScN is stable up to 40%. Decomposition has not been observed in all experimental studies probably due to the nature of sputter deposition. Low growth temperatures limit kinetically the diffusion driven decomposition. However, studies have not evaluated the stability of w-AlScN. Almost all studies have focused on as-deposited sputtered films. As sputtering can result in nonequilibrium films, it is possible that the microstructure of w-AlScN changes to a more stable one due to high temperatures in processing or during use. The possible issue is loss of texture or formation of new phases with no or reduced piezoelectricity.<br/>In this study 1 μm thick AlScN samples with Sc-fraction of 30% are sputtered at 450 °C directly on (100) Si. The samples are annealed for 5 h at 400, 600, 850 and 1000 °C in order to induce and determine the temperature threshold for possible changes. Afterwards the microstructure of the samples is characterized with XRD and possible decomposition products are detected with RGA. SEM and EDX is used to study the morphology and composition of the films before and after annealing. The results show that AlScN thin films are stable in annealing. The XRD results (Fig. 2) confirm that the samples are c-axis oriented w-AlScN and show no changes after annealing. The RGA test showed no significant decomposition. The EDX results did not show any mass separation. However, the SEM micrographs (Fig. 3) show changes in the topography of the film after annealing.

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • simulation
  • spinodal decomposition
  • laser emission spectroscopy
  • texture
  • annealing
  • Energy-dispersive X-ray spectroscopy