Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petersen, Christian Rosenberg

  • Google
  • 14
  • 55
  • 1108

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Rapid non-destructive inspection of sub-surface defects in 3D printed alumina through 30 layers with 7 μm depth resolution1citations
  • 2023Mid-IR Supercontinuum Noise Reduction Using a Short Piece of Normal Dispersion Fiber - A General Mechanism8citations
  • 2021Influence of Thermo-Mechanical Mismatch when Nanoimprinting Anti-Reflective Structures onto Small-core Mid-IR Chalcogenide Fiberscitations
  • 2021Thermo-mechanical dynamics of nanoimprinting anti-reflective structures onto small-core mid-IR chalcogenide fibers12citations
  • 2021Graded Index Chalcogenide Fibers with Nanostructured Core11citations
  • 2019Chalcogenide glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation6citations
  • 2018Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared68citations
  • 2018Multimaterial photonic crystal fibers8citations
  • 2015Mid infrared supercontinuum generation from chalcogenide glass waveguides and fibers1citations
  • 2015Mid-infrared supercontinuum generation in the fingerprint regioncitations
  • 2014Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers128citations
  • 2014Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre865citations
  • 2014Supercontinuum generation from ultraviolet to mid-infraredcitations
  • 2014Mid-infrared supercontinuum generation in concatenated fluoride and chalcogenide glass fibers covering more than three octavescitations

Places of action

Chart of shared publication
Brouczek, D.
1 / 1 shared
Israelsen, Niels Møller
1 / 1 shared
Neumann, K.
1 / 2 shared
Benson, N.
1 / 2 shared
Lapre, Coraline
1 / 1 shared
Bang, Ole
13 / 142 shared
Schwentenwein, M.
1 / 6 shared
Hansen, Rasmus Eilkœr
1 / 1 shared
Moltke, Asbjørn
1 / 1 shared
Raghuraman, Sidharthan
1 / 2 shared
Smith, Callum Robertson
1 / 2 shared
Yoo, Seongwoo
1 / 7 shared
Seddon, Angela B.
2 / 14 shared
Furniss, David
3 / 22 shared
Markos, Christos
4 / 46 shared
Woyessa, Getinet
2 / 47 shared
Lotz, Mikkel Rønne
3 / 5 shared
Taboryski, Rafael Jozef
3 / 34 shared
Kasztelanic, Rafał
1 / 2 shared
Klimczak, Mariusz
1 / 17 shared
Forestier, Xavier
1 / 1 shared
Meneghetti, Marcello
2 / 12 shared
Troles, Johann
3 / 76 shared
Buczyński, Ryszard
1 / 11 shared
Sylvestre, Thibaut
1 / 22 shared
Ghosh, Amar N.
1 / 1 shared
Venck, Sebastien
1 / 2 shared
Dudley, John M.
1 / 3 shared
Brilland, Laurent
4 / 45 shared
Jakobsen, Mogens Havsteen
1 / 8 shared
Qi, Sisheng
1 / 2 shared
Choi, Duk-Yong
1 / 12 shared
Madden, Steve
1 / 17 shared
Yu, Yi
1 / 3 shared
Zhang, Bin
1 / 9 shared
Caillaud, Celine
1 / 12 shared
Kubat, Irnis
6 / 11 shared
Møller, Uffe Visbech
6 / 6 shared
Zhai, Chengcheng
1 / 2 shared
Yang, Zhiyong
1 / 8 shared
Méchin, David
3 / 10 shared
Wang, Rongping
1 / 16 shared
Luther-Davies, Barry
1 / 23 shared
Gai, Xin
1 / 6 shared
Guo, Wei
1 / 12 shared
Benson, Trevor
3 / 8 shared
Moselund, Peter M.
3 / 9 shared
Seddon, Angela
3 / 10 shared
Tang, Zhuoqi
1 / 13 shared
Zhou, Binbin
1 / 5 shared
Dupont, Sune
1 / 1 shared
Abdel-Moneim, Nabil
1 / 5 shared
Sujecki, Slawomir
1 / 10 shared
Ramsay, Jacob Søndergaard
1 / 1 shared
Sørensen, Simon Toft
1 / 1 shared
Chart of publication period
2024
2023
2021
2019
2018
2015
2014

Co-Authors (by relevance)

  • Brouczek, D.
  • Israelsen, Niels Møller
  • Neumann, K.
  • Benson, N.
  • Lapre, Coraline
  • Bang, Ole
  • Schwentenwein, M.
  • Hansen, Rasmus Eilkœr
  • Moltke, Asbjørn
  • Raghuraman, Sidharthan
  • Smith, Callum Robertson
  • Yoo, Seongwoo
  • Seddon, Angela B.
  • Furniss, David
  • Markos, Christos
  • Woyessa, Getinet
  • Lotz, Mikkel Rønne
  • Taboryski, Rafael Jozef
  • Kasztelanic, Rafał
  • Klimczak, Mariusz
  • Forestier, Xavier
  • Meneghetti, Marcello
  • Troles, Johann
  • Buczyński, Ryszard
  • Sylvestre, Thibaut
  • Ghosh, Amar N.
  • Venck, Sebastien
  • Dudley, John M.
  • Brilland, Laurent
  • Jakobsen, Mogens Havsteen
  • Qi, Sisheng
  • Choi, Duk-Yong
  • Madden, Steve
  • Yu, Yi
  • Zhang, Bin
  • Caillaud, Celine
  • Kubat, Irnis
  • Møller, Uffe Visbech
  • Zhai, Chengcheng
  • Yang, Zhiyong
  • Méchin, David
  • Wang, Rongping
  • Luther-Davies, Barry
  • Gai, Xin
  • Guo, Wei
  • Benson, Trevor
  • Moselund, Peter M.
  • Seddon, Angela
  • Tang, Zhuoqi
  • Zhou, Binbin
  • Dupont, Sune
  • Abdel-Moneim, Nabil
  • Sujecki, Slawomir
  • Ramsay, Jacob Søndergaard
  • Sørensen, Simon Toft
OrganizationsLocationPeople

conferencepaper

Supercontinuum generation from ultraviolet to mid-infrared

  • Petersen, Christian Rosenberg
  • Kubat, Irnis
  • Møller, Uffe Visbech
  • Moselund, Peter M.
  • Sørensen, Simon Toft
  • Bang, Ole
Abstract

The advent of photonic crystal fibers (PCFs) has paved the road for commercial high-power supercontinuum light sources. The air-hole structuring in the PCF manipulates the properties of light and gives a tremendous degree of design freedom, which has enabled pushing the properties of PCFs to limits that can never be achieved with standard step index fibers. For example, one can move the zero dispersion wavelength (ZDW) into the visible [1] and make them endlessly single moded [2]. For efficient supercontinuum generation it is of great importance that the pump wavelength is close to the ZDW. We demonstrate how the spectral blue-edge can be manipulated by careful fiber design and tapering of the PCF enabling supercontinuum generation spanning all the way from 380 nm to 2.4μm [3]. We discuss the limiting factors of the supercontinuum bandwidth. Furthermore, we discuss how the fiber tapering influences the intensity noise of the supercontinuum source [4].<br/><br/>Supercontinuum sources based on silica fibers are limited to the material loss edge at 2.4 μm. However, for wavelengths beyond 2.4 μm the attenuation of light in silica fibers is greatly increased making them useless for the mid-infrared region. Instead, other fiber materials such as fluoride-based glasses (ZBLAN) and chalcogenide glasses can be used for mid-infrared supercontinuum generation. We will show supercontinuum generation in ZBLAN fibers covering 1.5-4.5 μm [5] and super-continuum generation in microstructured chalcogenide fibers out to 9 μm. We discuss the prospects for extending the supercontinuum generation beyond 10 μm and highlight useful applications such as cancer detection and food analysis.

Topics
  • impedance spectroscopy
  • dispersion
  • glass
  • glass