People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhou, Jie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron–manganese scaffoldscitations
- 2023Biomechanical evaluation of additively manufactured patient-specific mandibular cage implants designed with a semi-automated workflowcitations
- 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutescitations
- 2023Quality of AM implants in biomedical applicationcitations
- 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffoldscitations
- 2022Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regenerationcitations
- 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous ironcitations
- 2022Additive Manufacturing of Biomaterialscitations
- 2021Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffoldscitations
- 2021Additively Manufactured Biodegradable Porous Zinc Implants for Orthopeadic Applications
- 2021Extrusion-based 3D printed biodegradable porous ironcitations
- 2021Biocompatibility and Absorption Behavior in Vitro of Direct Printed Porous Iron Porous Implants
- 2021Lattice structures made by laser powder bed fusioncitations
- 2020Additively manufactured biodegradable porous zinccitations
- 2020Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitutioncitations
- 2019Additively manufactured functionally graded biodegradable porous ironcitations
- 2019Modeling high temperature deformation characteristics of AA7020 aluminum alloy using substructure-based constitutive equations and mesh-free approximation methodcitations
- 2019Biodegradation-affected fatigue behavior of additively manufactured porous magnesiumcitations
- 2018Additively manufactured biodegradable porous ironcitations
- 2018A comprehensive investigation of the strengthening effects of dislocations, texture and low and high angle grain boundaries in ultrafine grained AA6063 aluminum alloycitations
- 2018Biodegradation and mechanical behavior of an advanced bioceramic-containing Mg matrix composite synthesized through in-situ solid-state oxidationcitations
- 2017Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applicationscitations
- 2017Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatmentcitations
- 2017Additively manufactured biodegradable porous magnesiumcitations
- 2017Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradationcitations
- 2016Simultaneous improvements of the strength and ductility of fine-grained AA6063 alloy with increasing number of ECAP passescitations
- 2016An investigation on the properties of injection-molded pure iron potentially for biodegradable stent applicationcitations
- 2015Analysis of the densification behaviour of titanium/carbamide powder mixtures in the preparation of biomedical titanium scaffolds.
- 2015In vitro degradation of magnesium metal matrix composites containing bredigite
- 2015Evolution of macro- and micro-pores in the porous structures of biomedical titanium scaffolds during isothermal sintering
- 2010Preliminary investigation on creep-fatigue regime in extrusion dies
Places of action
Organizations | Location | People |
---|
document
In vitro degradation of magnesium metal matrix composites containing bredigite
Abstract
Ti is currently the most popular material for bone fracture fixation devices. One of the disadvantages of using Ti and other metals is that they are too strong and too stiff, causing the stress-shielding effect. Often, a second invasive surgery is needed to remove the implant after the healing process is completed. Biodegradable plates and screws can eliminate the need for implant removal operations. In recent years, much attention has been paid to developing Mg and its alloys for orthopedic applications. These materials possess densities and elastic moduli closer to those of the human bone than other metallic biomaterials for permanent implants. However, Mg corrodes too rapidly in physiological environments, which has halted the advances towards its clinical applications. Moreover, Mg lacks bioactivity to promote cell growth and speed up the healing process. The degradation rate of Mg can be reduced and its bioactivity enhanced by adding a bioactive ceramic agent, e.g., bridigite Ca7Mg(SiO4)4 with proven bioactivity, to Mg to form Magnesium Metal Matrix Composites (Mg-MMCs). With powder metallurgy (P/M) techniques, the maximum amount of bioceramic addition has been limited to 15 vol.%, above which ceramic particles tend to form agglomerates, negatively affecting mechanical properties [1, 2]. The present study aimed at exploring the possibility of adding bredigite particles up to 40 vol.% to a Mg powder and determine the benefits in terms of the reduction in degradation rate and formation of bone-like apatite (Ca-P-containing compounds) on composite surface. Mg-MMCs with 0, 10, 20, 30 and 40 vol.% of bredigite were prepared from powder mixtures using a vacuum hot press. Bredigite particles were uniformly distributed in all the Mg-MMCs. No structural disintegrity could be observed under optical microscope, as shown in Fig. 1. The degradation rates of Mg-MMCs were determined by measuring the amount of evolving H2 during immersion tests in the DMEM cell culture medium (Dulbecco's Modified Eagle's Medium) for up to 24 h and the amounts of ions released or lost using an inductively coupled plasma atomic emission spectroscopy (ICP-AES). Fig. 2 compares the amounts of H2 after 24 h immersion in DMEM. Clearly, H2 evolution decreased with increasing volume fraction of bredigite, confirming the benefits from adding bredigite to Mg. Mg-40Br exhibited the lowest amount of H2, corresponding to the lowest rate of degradation. Fig. 3 shows the amounts of ions (Mg, Si, Ca and P) released from samples to DMEM or lost from DMEM over time. All the samples released increasing amounts of Mg over time, indicating gradual degradation. Mg-40Br consistently released the least amounts of Mg, confirming the results of H2 measurement. The substantial differences in Mg release between Mg-0Br and Mg-20Br demonstrated the effect of bredigite in slowing down the degradation of Mg. Ca and P should be treated together since they form Ca-P-containing precipitates on sample surface. The losses of Ca and P in DMEM over time imply the deposition of Ca-P compounds on sample surface. A maximum amount of Ca was lost to pure Mg after 24 h, while P losses were very similar between all the samples. Considering the fact that bredigite contained about 42 wt.% of Ca, the loss of Ca in DMEM leading to Ca-P deposition must have been counteracted by Ca release from the composites as a result of bredigite degradation. In conclusion, Mg-MMCs with large volume fractions of bredigite were successfully made using the (P/M) technique. The in vitro degradation tests in DMEM showed decreasing amounts of H2 with increasing volume fraction of bredigite, confirming the beneficial effect of bredigite in slowing down the degradation of Mg. After 24 h, the amount of free Ca in DMEM was larger for the composites with larger fractions of bredigite, suggesting the release of Ca ions to compensate for the loss of Ca for Ca-P precipitation on composite surface.