Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Ruitenbeek, Frank

  • Google
  • 6
  • 17
  • 22

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Towards remote sensing of Rare Earth Element resources – first steps: spectroscopy of synthetic REE mineralscitations
  • 2022Performance of analytical techniques (XRD, EPMA, SWIR imaging) for the identification of minerals frequently formed during natural and technological geothermal processes1citations
  • 2021Detection of Interlayered Illite/Smectite by Means of XRD and Hyperspectral Techniquescitations
  • 2019Short-Wave Infrared (SWIR) Hyperspectral Characterization of Alteration at the Sadiola Hill Gold Deposit, Mali, Western Africacitations
  • 2018Data mining of remotely sensed datasets for ore grade estimationcitations
  • 2016An alternative quality control technique for mineral chemistry analysis of portland cement-grade limestone using shortwave infrared spectroscopy21citations

Places of action

Chart of shared publication
Bakker, Wim Harry
1 / 1 shared
Deon, Fiorenza
1 / 1 shared
Dijkstra, Arjan
1 / 1 shared
Förster, Hans-Jürgen
1 / 1 shared
Deon, F.
2 / 2 shared
Appelt, Oona
1 / 2 shared
Lievens, Caroline
2 / 4 shared
Marcatelli, C.
1 / 1 shared
Tuisku, Pekka
1 / 1 shared
Martynenko, Semyon
1 / 1 shared
Hein, Kim
1 / 1 shared
Hewson, Robert
1 / 1 shared
Maghsoudi Moud, Fardad
1 / 1 shared
Haroni, H. Asadi
1 / 1 shared
Amri, Fadli
1 / 1 shared
Smeth, J. B. De
1 / 1 shared
Zaini, Nasrullah
1 / 1 shared
Chart of publication period
2023
2022
2021
2019
2018
2016

Co-Authors (by relevance)

  • Bakker, Wim Harry
  • Deon, Fiorenza
  • Dijkstra, Arjan
  • Förster, Hans-Jürgen
  • Deon, F.
  • Appelt, Oona
  • Lievens, Caroline
  • Marcatelli, C.
  • Tuisku, Pekka
  • Martynenko, Semyon
  • Hein, Kim
  • Hewson, Robert
  • Maghsoudi Moud, Fardad
  • Haroni, H. Asadi
  • Amri, Fadli
  • Smeth, J. B. De
  • Zaini, Nasrullah
OrganizationsLocationPeople

document

Data mining of remotely sensed datasets for ore grade estimation

  • Hewson, Robert
  • Maghsoudi Moud, Fardad
  • Haroni, H. Asadi
  • Van Ruitenbeek, Frank
Abstract

Estimation of ore grade is a time and cost consuming process that requires laboratory based and exploratory information. Recognition of ore grade distribution in each alteration zone will help to decrease the risk of exploration and plan for further mining activities (Brown et al., 2000; Harris and Grunsky, 2015). Previous remotely sensed alteration mapping methods were merely focused on the spatial distribution of alteration zones (Ranjbar et al., 2011; Honarmand, 2016).<br/>However, further information like ore grade distribution and whether the explored area is an economic deposit or not remain as a question. To find out the relationships between ore grade with alteration minerals, quantitative models as a combination of geological knowledge with the mathematical analysis is suggested. The aim of this study is to develop an algorithm as a set of predictive models. The model could be used not for only broad regional exploration of ore deposits but also the estimation of ore grades in the different alteration zones by using remotely sensed datasets. The proposed remotely sensed datasets which will be used in this study include ASTER and Sentinel 2 satellite images, airborne magnetics and radiometrics.<br/>The geological setting of the studied Neotethyan Cu-porphyry deposit is the collision of the Arabian and Neotethyan plates, leading to the subduction of the Neotethyan oceanic plate under the central Iranian micro continental plate during the Paleocene to Oligocene (Maghsoudi Moud and Fathianpour, 2016). As a consequence, intensive calk-alkaline magmatic activities occurred and led to the formation of Urumieh-Dokhtar Magmatic Belt (UDMB). This belt is the host of several copper deposits (e.g. Sar Cheshmeh, Darreh Zar, Meiduk) in Iran and known as one of the main Cu-bearing belts in the world. 100-200 samples from the surface (weathered) and depth (drill hole) will be collected from the Dalli deposit within the central part of the UDMB to derive the predictive models. Approximately 30 samples from different alteration zones will be collected from the Kouh Panj area within the southeastern part of the UDMB to test the performance of the models.<br/>The study is divided into the following steps. First of all, different laboratory measurements like hyperspectral imaging, point spectroscopy, X-ray powder diffraction (XRD), X-ray fluorescence (XRF), and magnetometry will be applied to the samples of Dalli area. The laboratory measurements demonstrate truth information including ore grade, mineral composition, and mineral assemblages. Then, the relationships between the truth information and remotely sensed dataset will be quantified as a set of equations which make the predictive models. Afterwards, the models will be applied on the datasets to build a remotely sensed estimation of ore grade. The quantified estimates will be integrated together to create an unique map. This map illustrates the common ore grades in each alteration zone between the all datasets.<br/>The outcome will be compared to exploratory reports and approved ore reserve to evaluate the uncertainty and accuracy of the models. In the next stage, to assess the operation of the models, it will be applied to remotely sensed datasets of the Kouh Panj area to create an output ore grade map within the different alteration zones. Finally, the outcome will be compared to the analysis results of collected rocks from the Kouh Panj area to determine the uncertainty and accuracy of the model for the prediction of ore grade and alteration mapping. Since Cu porphyry systems of both Dalli and Kouh Panj areas are the same, it is expected that the created model in Dalli area is operative in Kouh Panj area with a derived estimation of uncertainty.

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • x-ray diffraction
  • copper
  • X-ray fluorescence spectroscopy