Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wilke, Hans-Joachim

  • Google
  • 7
  • 35
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Comparative FEM study on intervertebral disc modeling: Holzapfel-Gasser-Ogden vs. structural rebars6citations
  • 2022Cervical spine and muscle adaptation after spaceflight and relationship to herniation risk1citations
  • 2017A new multiscale micromechanical model of vertebral trabecular bones16citations
  • 2012Fabric based tsai-Wu yield-strength criterion for vertebral trabecular bone in stress space62citations
  • 2011Numerical Homogenization of Trabecular Bone Specimens using Composite Finite Elementscitations
  • 2009Statistical osteoporosis models using composite finite elements7citations
  • 2008Determining Effective Elasticity Parameters of Microstuctured Materialscitations

Places of action

Chart of shared publication
Lerchl, Tanja
1 / 1 shared
Ribeiro, Marx
1 / 2 shared
Nicolini, Luis Fernando
1 / 3 shared
Gruber, Gabriel
1 / 1 shared
Jaramillo, Héctor Enrique
1 / 2 shared
Kirschke, Jan S.
1 / 1 shared
Senner, Veit
1 / 1 shared
Nispel, Kati
1 / 1 shared
Martinez-Valdes, Eduardo
1 / 1 shared
Armbrecht, Gabriele
1 / 1 shared
Albracht, Kirsten
1 / 1 shared
Belavy, Daniel L.
1 / 1 shared
Arvanitidis, Michail
1 / 1 shared
Falla, Deborah
1 / 3 shared
Goell, Fabian
1 / 1 shared
Braunstein, Bjoern
1 / 1 shared
Kaczorowski, Svenja
1 / 1 shared
Rennerfelt, Kajsa
1 / 1 shared
Scheuring, Richard
1 / 1 shared
Karner, Vera
1 / 1 shared
Arora, Nitin Kumar
1 / 1 shared
Sovelius, Roope
1 / 1 shared
Brisby, Helena
1 / 1 shared
Haj-Ali, Rami
1 / 1 shared
Wolfram, Uwe
5 / 24 shared
Galbusera, Fabio
1 / 1 shared
Massarwa, Eyass
1 / 1 shared
Aboudi, Jacob
1 / 1 shared
Zysset, Philippe K.
1 / 8 shared
Gross, Thomas
1 / 4 shared
Schwiedrizk, J.
1 / 1 shared
Pahr, Dieter H.
1 / 4 shared
Schwen, Lars Ole
3 / 3 shared
Rumpf, Martin
3 / 4 shared
Simon, Ulrich
1 / 6 shared
Chart of publication period
2024
2022
2017
2012
2011
2009
2008

Co-Authors (by relevance)

  • Lerchl, Tanja
  • Ribeiro, Marx
  • Nicolini, Luis Fernando
  • Gruber, Gabriel
  • Jaramillo, Héctor Enrique
  • Kirschke, Jan S.
  • Senner, Veit
  • Nispel, Kati
  • Martinez-Valdes, Eduardo
  • Armbrecht, Gabriele
  • Albracht, Kirsten
  • Belavy, Daniel L.
  • Arvanitidis, Michail
  • Falla, Deborah
  • Goell, Fabian
  • Braunstein, Bjoern
  • Kaczorowski, Svenja
  • Rennerfelt, Kajsa
  • Scheuring, Richard
  • Karner, Vera
  • Arora, Nitin Kumar
  • Sovelius, Roope
  • Brisby, Helena
  • Haj-Ali, Rami
  • Wolfram, Uwe
  • Galbusera, Fabio
  • Massarwa, Eyass
  • Aboudi, Jacob
  • Zysset, Philippe K.
  • Gross, Thomas
  • Schwiedrizk, J.
  • Pahr, Dieter H.
  • Schwen, Lars Ole
  • Rumpf, Martin
  • Simon, Ulrich
OrganizationsLocationPeople

document

Numerical Homogenization of Trabecular Bone Specimens using Composite Finite Elements

  • Schwen, Lars Ole
  • Wolfram, Uwe
  • Wilke, Hans-Joachim
  • Rumpf, Martin
Abstract

Numerical homogenization is a tool to determine effective macroscopic material properties for microstructured materials. This tool is tailored and applied to ensembles of young and elder human and of porcine and bovine vertebral bone specimens. On the microscale of the spongiosa a linearized Lam{\'{e}}--Navier type elasticity model is assumed and the computed macroscopic material properties are represented by a general elasticity tensor. The computation is based on a suitable set of microscopic simulations on the cubic specimens for macroscopic strain scenarios. The subsequent evaluation of the effective stresses is used to determine effective linear elasticity tensors. A Composite Finite Element discretization is taken into account to resolve the complicated domain. The classical strain--stress and a corresponding variational homogenization approach are compared. In case of an (artificial) periodic microstructure, a fundamental cell is easily identified and a macroscopic unit strain can be imposed using affine-periodic boundary conditions. In contrast, statistically periodic structures require the identification of statistically representative prototype cells. Unit macroscopic strains are then imposed only in an approximate sense using displacement boundary conditions. The impact of the resulting boundary artifacts on the solution are compensated for via restricting the evaluation of effective stress to a suitably selected smaller subset of the cubic specimen. Furthermore, an optimization approach is used to identify possible axes of orthotropy of the resulting linear elasticity tensor. Finally, the different specimens of human, porcine and bovine spongiosa are analyzed statistically.

Topics
  • impedance spectroscopy
  • microstructure
  • simulation
  • composite
  • elasticity
  • homogenization