People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eckert, Richard B.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Optimizing Corrosion Mitigation Costs Using Failure Analysis
- 2021Review of Current Gaps in Microbiologically Influenced Corrosion (MIC) Failure Investigations in Alberta’s Oil and Gas Sector
- 2021Using Failure Analysis to Optimize Corrosion Mitigation Costs
- 2021Time to Agree: The Efforts to Standardize Molecular Microbiological Methods (MMM) For Detection of Microorganisms in Natural and Engineered Systems
- 2021Failure Investigation of Microbiologically Influenced Corrosion in Alberta’s Oil and Gas Upstream Pipeline Operations – Trends and Gaps
- 2021Laboratory investigation of biocide treated waters to inhibit biofilm growth and reduce the potential for MIC
- 2021Microbiological Tests Used to Diagnose Microbiologically Influenced Corrosion (MIC) in Failure Investigations
- 2019Pipeline Failure Investigation: Is it MIC?
Places of action
Organizations | Location | People |
---|
article
Pipeline Failure Investigation: Is it MIC?
Abstract
The investigation of pipeline corrosion failures, including those causedby microbiologically influenced corrosion (MIC), requires multiple lines ofevidence to identify causative mechanisms and contributing factors. Thetypes of evidence needed for the corrosion analysis include informationabout the design and history of operation of the asset; the physical, environmental, and metallurgical conditions present where corrosion isobserved; and microbiological conditions. Next, this information is integrated and analyzed to assess whetherbiotic or abiotic processes wereresponsible for the failure. While theability to diagnose MIC in the oil andgas industry is improving, practicallimitations associated with samplecollection in remote locations or frominside pipelines still present challenges to conclusively determine thecause