Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhifeng, Z.

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Understanding the structural, morphological and optical features of Mo, CrN and CrMoN sputtered filmscitations

Places of action

Chart of shared publication
Ibrahim, K.
1 / 9 shared
Jiang, Z-T
1 / 29 shared
Mondinos, N.
1 / 12 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Ibrahim, K.
  • Jiang, Z-T
  • Mondinos, N.
OrganizationsLocationPeople

document

Understanding the structural, morphological and optical features of Mo, CrN and CrMoN sputtered films

  • Ibrahim, K.
  • Zhifeng, Z.
  • Jiang, Z-T
  • Mondinos, N.
Abstract

In recent years, researchers around the world are paying substantial efforts for the development of transition metallic nitride based solar selective surfaces due to a good combination of many properties e.g., large band-gap, excellent chemical and thermal stability, corrosion resistance, wear resistance, oxidation resistance and physical robustness. Further applications of transition metal nitride based films also include: spintronics, nonvolatile storage, microelectronic/optical/optical storage devices. In view of these facts, research interests on transition metal nitride based films have been accelerated and dedicated to the development of new species studying their properties to find potential applications in other areas. In the present study, Mo, CrN, and Mo-doped CrN (CrN:Mo) films synthesized via closed field unbalanced magnetron sputtering technique were characterised using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy to study their structural,• surface morphological and optical properties. This includes prope1iies such as solar absorptance, thermal emittance, solar selectivity, complex refractive index, and complex dielectric functions. The chemical composition of these films was confirmed by EDS measurement. Structural disorder was observed in XRD spectra depending on the Mo incorporation to the CrN matrix. The XRD studies indicated crystallinity of the Mo and CrN phases were substantially increased in the CrN:Mo films and also confirmed via FESEM studies. UV-Vis spectrum (190-2500nm) of the CrN:Mo films demonstrate the highest value of solar absorptance (61%) while a substantial decline from 31.5% (CrN) to 5.6% (CrN:Mo) in the thermal emittance value, from FTIR (2.5 - 20 Jlm). Consequently, the CrN:Mo films exhibited the highest solar selectivity value of 9.55. Inclusive to the optical properties given above, the dielectric propetiies of these films were also investigated from the UV-Vis and FTIR results.

Topics
  • surface
  • corrosion
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • wear resistance
  • nitride
  • chemical composition
  • Energy-dispersive X-ray spectroscopy
  • crystallinity
  • Ultraviolet–visible spectroscopy