People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cordova, Laura
Universidad Politécnica de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Impact of powder reusability on batch repeatability of Ti6Al4V ELI for PBF-LB industrial productioncitations
- 2020Porous materials additively manufactured at low energycitations
- 2020Exploring the influence of powder properties and handling on the selective laser melting process
- 2020Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF)citations
- 2020Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusioncitations
- 2019An Overview: Laser-Based Additive Manufacturing for High Temperature Tribologycitations
- 2019Laser metal deposition of vanadium-rich high speed steel: Microstructuraland high temperature wear characterizationcitations
- 2019Drying strategies to reduce the formation of hydrogen porosity in Al alloys produced by Additive Manufacturing
- 2019Melt Pool Monitoring for the Laser Powder Bed Fusion Process
- 2019Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterizationcitations
- 2018Mechanical properties of aluminum alloys produced by Metal Additive Manufacturing
- 2017Powder Characterization and Optimization for Additive Manufacturing
Places of action
Organizations | Location | People |
---|
document
Mechanical properties of aluminum alloys produced by Metal Additive Manufacturing
Abstract
A new aluminum alloy, named Scalmalloy®, was specifically developed for the Laser powder bed fusion (LPBF) process and aerospace applications with enhanced mechanical performance. This paper proposes an innovative testing method to study the mechanical properties of Scalmalloy® and to compare them with those of AlSi10Mg, a typical casting alloy with good weldability. In situ tensile tests inside the SEM were performed on the two alloys to track damage evolution. This enables to continuously observe the crack nucleation, the propagation through the imperfections typically found in AM and any microstructural changes. To determine the fracture mode and evaluate the possible correlation between the fracture mode and mechanical properties, fracture surfaces of the samples were studied, and the fracture mechanics are discussed. The analysis of the static behavior was completed with micro-tensile and hardness tests. The results obtained for the two aluminum alloys using this range of experimental methods are analyzed and compared with literature studies of Additive and Conventional Manufacturing.