Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cruz-Pacheco, Andrés Felipe

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Coating of Polyetheretherketone Films with Silver Nanoparticles by a Simple Chemical Reduction Method and Their Antibacterial Activitycitations

Places of action

Chart of shared publication
Muñoz-Castiblanco, Deysi Tatiana
1 / 1 shared
Cuaspud, Jairo Alberto Gómez
1 / 2 shared
Zambrano, José Jobanny Martínez
1 / 1 shared
Vargas, Carlos Arturo Parra
1 / 2 shared
Gómez, Carlos Andrés Palacio
1 / 1 shared
Paredes-Madrid, Leonel
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Muñoz-Castiblanco, Deysi Tatiana
  • Cuaspud, Jairo Alberto Gómez
  • Zambrano, José Jobanny Martínez
  • Vargas, Carlos Arturo Parra
  • Gómez, Carlos Andrés Palacio
  • Paredes-Madrid, Leonel
OrganizationsLocationPeople

article

Coating of Polyetheretherketone Films with Silver Nanoparticles by a Simple Chemical Reduction Method and Their Antibacterial Activity

  • Muñoz-Castiblanco, Deysi Tatiana
  • Cruz-Pacheco, Andrés Felipe
  • Cuaspud, Jairo Alberto Gómez
  • Zambrano, José Jobanny Martínez
  • Vargas, Carlos Arturo Parra
  • Gómez, Carlos Andrés Palacio
  • Paredes-Madrid, Leonel
Abstract

The coating of polymeric substrate polyetheretherketone (PEEK) with silver nanoparticles (AgNPs) was carried out by a wet chemical route at room temperature. The coating process was developed from the Tollens reagent and D-glucose as reducing agent. The resulting composite exhibited antimicrobial activity. The PEEK films were coated with a single layer and two layers of silver nanoparticles in various concentrations. The crystallographic properties of the polymer and the silver nanoparticles were analyzed by X-ray diffraction (XRD). Fourier transform infrared spectra (FTIR) show the interaction between the silver nanoparticles with the polymeric substrate. Transmission electron microscope (TEM) images confirmed the obtaining of metallic nanoparticles with average sizes of 25 nm. It was possible to estimate the amount of silver deposited on PEEK with the help of thermogravimetric analysis. The morphology and shape of the AgNPs uniformly deposited on the PEEK films was ascertained by the techniques of scanning electron microscopy (SEM) and atomic force microscopy (AFM), evidencing the increase in the amount of silver by increasing the concentration of the metal precursor. Finally, the antibacterial activity of the films coated with Ag in Escherichia coli , Serratia marcescens and Bacillus licheniformis was evaluated, evidencing that the concentration of silver is crucial in the cellular replication of the bacteria.

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • silver
  • scanning electron microscopy
  • x-ray diffraction
  • atomic force microscopy
  • composite
  • transmission electron microscopy
  • thermogravimetry