Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baron, Gino

  • Google
  • 12
  • 57
  • 572

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Structure I methane hydrate confined in C8-grafted SBA-1511citations
  • 2023Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device11citations
  • 2020Evaluation of particle and bed integrity of aqueous size-exclusion columns packed with sub-2 µm particles operated at high pressure4citations
  • 2020Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorption27citations
  • 2019Highly Robust MOF Polymeric Beads with a Controllable Size for Molecular Separations55citations
  • 2019Exceptional HCl removal from Hydrogen gas by Reactive Adsorption on a Metal-Organic Frameworkcitations
  • 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC system7citations
  • 2017Gel-based morphological design of zirconium metal-organic frameworks228citations
  • 2016The effect of crystal diversity of nanoporous materials on mass transfer studiescitations
  • 2015The role of crystal diversity in understanding mass transfer in nanoporous materials168citations
  • 2015Poster: A comprehensive study of the macro- and mesopores size distributions of polymer monoliths using complementary physical characterization techniquescitations
  • 2015Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillers61citations

Places of action

Chart of shared publication
Houlleberghs, Maarten
1 / 1 shared
Ciocarlan, Radu George
1 / 1 shared
Beckwée, Emile Jules
1 / 1 shared
Denayer, Joeri
9 / 17 shared
Cool, Pegie
1 / 9 shared
Hanssens, Lucas
1 / 1 shared
Martens, Johan
1 / 17 shared
Chandran, C. Vinod
1 / 2 shared
Breynaert, Eric
1 / 5 shared
Radhakrishnan, Sambhu
1 / 2 shared
Belka, Mariusz
1 / 1 shared
Bączek, Tomasz
1 / 1 shared
Mikolaszek, Barbara
1 / 1 shared
Ulenberg, Szymon
1 / 1 shared
Georgiev, Paweł
1 / 1 shared
Desmet, Gert
2 / 12 shared
Szynkiewicz, Dagmara
1 / 1 shared
Hejna, Aleksander
1 / 10 shared
Eeltink, Sebastiaan
2 / 6 shared
Terryn, Herman
4 / 124 shared
Wirth, Mary J.
1 / 1 shared
Vos, Jelle De
1 / 1 shared
Kaal, Erwin
1 / 1 shared
Jabbour, Christia
1 / 2 shared
Finoulst, Anne-Lore
1 / 1 shared
Cousin-Saint-Remi, Julien
3 / 3 shared
Goderis, Steven
1 / 3 shared
Segato, Tiriana
1 / 1 shared
Perre, Stijn Van Der
1 / 1 shared
Delplancke, Marie-Paule
1 / 2 shared
Ottevaere, Heidi
1 / 16 shared
Hara, Takeshi
1 / 1 shared
Futagami, Shunta
1 / 1 shared
Malsche, Wim De
1 / 4 shared
Bennett, Thomas
1 / 10 shared
Bueken, Bart
1 / 6 shared
Velthoven, Niels Van
1 / 1 shared
Stassen, Ivo
1 / 11 shared
Ameloot, Rob
1 / 28 shared
Stassin, Timothee
1 / 2 shared
Vos, Dirk De
1 / 15 shared
Willhammar, Tom
1 / 7 shared
Bals, Sara
1 / 93 shared
Keen, David A.
1 / 29 shared
Remi, Julien Cousin Saint
2 / 2 shared
Lauerer, Alexander
2 / 4 shared
Kärger, Jörg
2 / 12 shared
Chmelik, Christian
2 / 10 shared
Vandendael, Isabelle
1 / 10 shared
Wouters, Sam
1 / 1 shared
Anjum, Mohammad Waqas
1 / 1 shared
Didden, Jeroen
1 / 2 shared
Clippel, Filip De
1 / 1 shared
Vankelecom, Ivo
1 / 12 shared
Couck, Sarah
1 / 5 shared
Khan, Asim Laeeq
1 / 1 shared
Sels, Bert
1 / 5 shared
Chart of publication period
2024
2023
2020
2019
2017
2016
2015

Co-Authors (by relevance)

  • Houlleberghs, Maarten
  • Ciocarlan, Radu George
  • Beckwée, Emile Jules
  • Denayer, Joeri
  • Cool, Pegie
  • Hanssens, Lucas
  • Martens, Johan
  • Chandran, C. Vinod
  • Breynaert, Eric
  • Radhakrishnan, Sambhu
  • Belka, Mariusz
  • Bączek, Tomasz
  • Mikolaszek, Barbara
  • Ulenberg, Szymon
  • Georgiev, Paweł
  • Desmet, Gert
  • Szynkiewicz, Dagmara
  • Hejna, Aleksander
  • Eeltink, Sebastiaan
  • Terryn, Herman
  • Wirth, Mary J.
  • Vos, Jelle De
  • Kaal, Erwin
  • Jabbour, Christia
  • Finoulst, Anne-Lore
  • Cousin-Saint-Remi, Julien
  • Goderis, Steven
  • Segato, Tiriana
  • Perre, Stijn Van Der
  • Delplancke, Marie-Paule
  • Ottevaere, Heidi
  • Hara, Takeshi
  • Futagami, Shunta
  • Malsche, Wim De
  • Bennett, Thomas
  • Bueken, Bart
  • Velthoven, Niels Van
  • Stassen, Ivo
  • Ameloot, Rob
  • Stassin, Timothee
  • Vos, Dirk De
  • Willhammar, Tom
  • Bals, Sara
  • Keen, David A.
  • Remi, Julien Cousin Saint
  • Lauerer, Alexander
  • Kärger, Jörg
  • Chmelik, Christian
  • Vandendael, Isabelle
  • Wouters, Sam
  • Anjum, Mohammad Waqas
  • Didden, Jeroen
  • Clippel, Filip De
  • Vankelecom, Ivo
  • Couck, Sarah
  • Khan, Asim Laeeq
  • Sels, Bert
OrganizationsLocationPeople

document

Poster: A comprehensive study of the macro- and mesopores size distributions of polymer monoliths using complementary physical characterization techniques

  • Eeltink, Sebastiaan
  • Baron, Gino
  • Wouters, Sam
Abstract

Introduction<br/>The origin of unfavorable peak dispersion characteristics for small-molecule separations utilizing polymer-monolithic materials is not yet understood and severely limits the application possibilities of these columns. Detailed insights in the micro- and mesopores structure of polymer monolithic stationary phase materials can ultimately lead to a better understanding of the relation between the monolithic column structure and peak dispersion in high-performance liquid chromatography.<br/><br/>Methods<br/>Two different poly(styrene-co-divinylbenzene) monolithic materials were synthesized via a thermally-initiated free-radical polymerization. The ratio of THF/1-decanol was varied to yield different morphologies. These monolithic materials were synthesized in parallel in-situ in silanized 200 µm I.D. capillary tubing and in bulk quantity (2 mL vials). Complementary techniques, gas adsorption (applying non-local density function theory (NLDFT)), mercury-intrusion porosimetry, and scanning-electron and atomic-force microscopy, have been applied to characterize the pore-size distributions of the monolithic materials on the micro-, meso- and macroscopic level.<br/><br/>Results<br/>Increasing the ratio of THF/1-decanol in the polymerization mixture by 5% resulted in a decrease in average globule size from 400 nm to 150 nm. Mercury-intrusion porosimetry data shows a reduction of macropore size from 2000 nm to 200 nm. Gas-adsorption data fitted with NLDFT models reveals the presence of trimodal mesopore-size distributions (with mode pore diameters at 4 nm, 16 nm, and 24 nm). The material with a small domain size yields substantially higher adsorption isotherms compared to the sample with larger feature sizes and a sixfold higher pore-volume was noted for the monolith with small domain size. This higher pore volume could be explained by the difference in surface area to material volume. If argon can only penetrate the outer layer of the globules, a large portion of (probably microporous) material inside large globules remains shielded off, hence not contributing to porosity within the studied range. A hysteresis between adsorption and desorption was noted over a very broad range of relative pressures. This is likely to be caused by the dissolving of argon into the polymer, which is only again released at very low pressures. <br/><br/>Novel aspects: Argon adsorption data processed via density function theory provides reliable info on micro- and mesoscopic nature of polymer monoliths.

Topics
  • density
  • impedance spectroscopy
  • pore
  • dispersion
  • surface
  • polymer
  • phase
  • theory
  • porosity
  • microscopy
  • porosimetry
  • High-performance liquid chromatography
  • Mercury
  • dissolving