Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fernandez Rodriguez, C.

  • Google
  • 1
  • 12
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013CERAMIC MEMBRANES IN HYBRID PHOTOCATALYSIS/ULTRAFILTRATION PROCESSEScitations

Places of action

Chart of shared publication
Pastrana Martinez, Lm
1 / 4 shared
Romanos, Ge
1 / 5 shared
Morales Torres, S.
1 / 2 shared
Katsaros, Fk
1 / 2 shared
Athanasekou, Cp
1 / 1 shared
Moustakas, Ng
1 / 1 shared
Silva, Amt
1 / 12 shared
Faria, Jl
1 / 12 shared
Falaras, P.
1 / 9 shared
Donarodriguez, Jm
1 / 1 shared
Figueiredo, Jl
1 / 10 shared
Kontos, Ag
1 / 2 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Pastrana Martinez, Lm
  • Romanos, Ge
  • Morales Torres, S.
  • Katsaros, Fk
  • Athanasekou, Cp
  • Moustakas, Ng
  • Silva, Amt
  • Faria, Jl
  • Falaras, P.
  • Donarodriguez, Jm
  • Figueiredo, Jl
  • Kontos, Ag
OrganizationsLocationPeople

document

CERAMIC MEMBRANES IN HYBRID PHOTOCATALYSIS/ULTRAFILTRATION PROCESSES

  • Pastrana Martinez, Lm
  • Romanos, Ge
  • Morales Torres, S.
  • Katsaros, Fk
  • Athanasekou, Cp
  • Moustakas, Ng
  • Silva, Amt
  • Faria, Jl
  • Falaras, P.
  • Donarodriguez, Jm
  • Figueiredo, Jl
  • Fernandez Rodriguez, C.
  • Kontos, Ag
Abstract

The current work demonstrates the efficiency of a hybrid Photocatalysis/Ultrafiltration process to eliminate or reduce the contents of synthetic dyes in wastewater. The process involves highly active photocatalytic ceramic ultrafiltration membranes prepared with the deposition of various photocatalysts on both sides of UF mono-channel monoliths. Anatase TiO2 was deposited with chemical vapor deposition (CVD) and sol-gel (dip-coating) techniques. Novel materials such as modified TiO2 with an organic shell layer and reduced graphene oxide-TiO2 (rGO/TiO2) were also synthesised and stabilised on the surface and pore structure of the monoliths with the target to develop visible light responding membranes. The photocatalytic filtration experiments took place in a prototype water purification device in continuous flow conditions, using methylene blue (MB) and methyl orange (MO) as azo-dye model pollutants, under near-UV/Vis and visible light irradiation. The influence of several parameters, such as feed pressure, feed concentration and flow rate, on the pollutant degradation efficiency and membranes permeability was investigated and analysed. Furthermore, the novel hybrid process is compared with the standard Nanofiltration technique in regard to the pollutant removal efficiency and energy consumption.

Topics
  • impedance spectroscopy
  • pore
  • surface
  • experiment
  • permeability
  • ceramic
  • chemical vapor deposition