People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Santos, Filipe Amarante Dos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Programming quadric metasurfaces via infinitesimal origami maps of monohedral hexagonal tessellations
- 2020Explorative study on adaptive facades with superelastic antagonistic actuationcitations
- 2019Mechanical modeling of superelastic tensegrity braces for earthquake-proof structurescitations
- 2019Seismic performance of superelastic tensegrity braces
- 2018Toward an adaptive vibration absorber using shape-memory alloys, for civil engineering applicationscitations
- 2018Superelastic tensegrities: matrix formulation and antagonistic actuationcitations
- 2017Shape-memory alloys as macrostrain sensorscitations
- 2016FE Exploratory Investigation on the Performance of SMA-Reinforced Laminated Glass Panelscitations
- 2016Toward a Novel SMA-reinforced Laminated Glass Panelcitations
- 2016Buckling control using shape-memory alloy cablescitations
- 2010Comparison Between Two SMA Constitutive Models for Seismic Applications
- 2008Numerical simulation of superelastic shape memory alloys subjected to dynamic loadscitations
Places of action
Organizations | Location | People |
---|
article
Seismic performance of superelastic tensegrity braces
Abstract
<p>This paper explores the capabilities of a superelastic, tensegrity-inspired bracing system acting as a seismic protection device. The metamaterial-type response of the proposed structure, which is related to its geometry more than to the nature of the employed materials, yields a passive control device with optimized structural response. It operates as a lightweight mechanical amplifier for longitudinal displacements. The enhanced energy dissipation and the re-centering capacity of the proposed tensegrity-SMA braces are demonstrated through experimental tests, and the seismic analysis of a benchmark structure. The effective performance of the proposed bracing in reducing the seismic damage of the served building paves the way to the design of novel seismic energy dissipation devices that combine tensegity and superelasticity concepts.</p>