People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Djambazov, Georgi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023A study of the complex dynamics of dendrite solidification coupled to structural mechanicscitations
- 2021Enhancement of mechanical properties of pure aluminium through contactless melt sonicating treatmentcitations
- 2020Acoustic resonance for contactless ultrasonic cavitation in alloy meltscitations
- 2020Progress in the development of a contactless ultrasonic processing route for alloy grain refinementcitations
- 2020Contactless ultrasonic treatment in direct chill casting
- 2019The contactless electromagnetic sonotrodecitations
- 2019Contactless ultrasonic cavitation in alloy meltscitations
- 2016Multiple timescale modelling of particle suspensions in metal melts subjected to external forces
- 2015Contactless ultrasound generation in a cruciblecitations
- 2013A multiscale 3D model of the Vacuum Arc remelting processcitations
- 2012A multi-scale 3D model of the vacuum arc remelting processcitations
- 2009Vacuum arc remelting time dependent modelling
- 2009Effect of varying electromagnetic field on the VAR process
- 2008Vacuum arc remelting time dependent modelling
- 2006Experimental and numerical study of the cold crucible melting processcitations
- 2005Maximising heat transfer efficiency in the cold crucible induction melting process
- 2004Numerical simulation of vacuum dezincing of lead alloy
Places of action
Organizations | Location | People |
---|
document
Multiple timescale modelling of particle suspensions in metal melts subjected to external forces
Abstract
Electro-magnetic (EM) fields are widely used in metallurgy in order to stir conducting metals without the risk of contamination or causing an instability or chemical reaction. During the manufacturing of metal matrix composites (MMC), ceramic micro- and nano-particles are added into the metal melt, and ultrasonic (US) processing and EM stirring are used to break the agglomerates and to enhance the dispersion of the particles. EM stirring can also be used to remove the unwanted particles from liquid metal by pushing them towards the walls of the cru-cible where they adhere and can be easily removed.A model has been developed to account for the complex interaction of the particles with each other, with the walls, as well as with the flow of the metal melt. Particles are modelled as elastic spheres with adhesion. Adhesion is incorporated in the model using the Johnson, Kendal, Robert (JKR) and Derjaguin, Muller, Toporov (DMT) theories. The case of the oblique impact of the particles is modelled according to the Thornton and Yin method based on the partial-slip theory developed by Mindlin & Deresievics. The developed particle model is then coupled with the magneto-hydrodynamics (MHD) code PHYSICA in order to demonstrate the effect of the EM stirring and vibration.Multiple time-scales are used which permits modelling the realistic time range of metal-processing and at the same time capture the individual collisions between particles with suffi-cient precision. Several methods of predicting the particle collisions are employed and their ef-ficiency is compared for the case of removing contaminating particles from liquid metal