People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Filacchione, Gianrico
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021VIS-IR Spectroscopy of Mixtures of Water Ice, Organic Matter, and Opaque Mineral in Support of Small Body Remote Sensing Observationscitations
- 2020An orbital water-ice cycle on comet 67P from colour changescitations
- 2017Spectrophotometric study of Saturn's main rings by means of Monte Carlo ray-tracing and Hapke's theory
- 2017From the Icy Satellites to Small Moons and Rings: Spectral Indicators by Cassini-VIMS Unveil Compositional Trends in the Saturnian System
- 2015Investigations of Saturn’s Main Rings over Broad Range of Wavelengths
- 2015The Ring System of Saturn as Seen by Cassini-VIMS (Invited)
- 2015Saturn B and C ring studies at multiple wavelengths
- 2015Studies of Saturn's Main Rings at Multiple Wavelengths
- 2013Constraints on Saturn ring particle properties and ring structure: Studies of Saturn's rings from UV to far IR
- 2013Surface Composition of the Non-Ice Component on Icy Satellites and Ring Particles in the Saturn System
- 2013Multiwavelength studies of Saturn's rings
- 2012Multi-wavelength studies of Saturn's rings to constrain ring particle properties and ring structure
- 2012Multi-wavelength studies of Saturn's rings to constrain ring particle properties and ring structure: the VIMS perspective
- 2012Studies of Saturn's rings from UV to far IR: Constraints on ring particle properties and ring structure
- 2011Composition and Grain Sizes of Dark Material in Saturn's Icy Satellites and Rings
- 2011The Composition of Saturn's Rings and Satellites from Cassini VIMS and UVIS
- 2010Spectrophotometric Modeling of Enceladus Surface Properties and Composition from Vims Data
- 2010VIS-IR spectral modeling of Rhea and Enceladus
- 2008The Composition of Saturn's Rings
- 2007Saturn's Rings Observed with Cassini-VIMS
Places of action
Organizations | Location | People |
---|
document
Studies of Saturn's Main Rings at Multiple Wavelengths
Abstract
A wealth of information about the characteristics of Saturn's ring particles and their regolith can be obtained by modeling the changes in their brightness, color and temperature with changing viewing geometry over a wide range of wavelengths, from ultraviolet through the thermal infrared. Data from Cassini's Composite Infrared Spectrometer (CIRS), Visual and Infrared Mapping Spectrometer (VIMS), Imaging Science Subsystem (ISS) and Ultraviolet Imaging Spectrograph (UVIS) are jointly studied using data from the lit and unlit main rings at multiple geometries and solar elevations over 11 years of the Cassini mission. Using multi-wavelength data sets allow us to test different thermal models by combining the effects of particle albedo, regolith grain size and surface roughness with thermal emissivity and inertia, particle spin rate and spin axis orientation. The CIRS temperature and ISS color variations are confined primarily to phase angle over a range of solar elevations with only small differences from changing spacecraft elevation. Color and temperature dependence with varying solar elevation angle are also observed. Brightness dependence with changing solar elevation angle and phase angle is observed with UVIS. VIMS observations show that the IR ice absorption band depths are a very weak function of phase angle, out to ~140 deg phase, suggesting that interparticle light scattering is relatively unimportant except at very high phase angles. These results imply that the individual properties of the ring particles may play a larger role than the collective properties of the rings, in particular at visible wavelengths. The temperature and color variation with phase angle may be a result of scattering within the regolith and on possibly rough surfaces of the clumps, as well as a contribution from scattering between individual particles in a many-particle-thick layer. Preliminary results from our joint studies will be presented. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2015 California Institute of Technology. Government sponsorship is acknowledged. <P />...