Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jacobsen, Rasmus Elkjær

  • Google
  • 15
  • 3
  • 47

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2023Reconfigurable Water-Based Antennas1citations
  • 2021Water-based devices for advanced control of electromagnetic waves34citations
  • 2021Water – A Microwave Material for Advanced Wave Control and Sensingcitations
  • 2020Mie Resonances in Water Spheres for Microwave Metamaterials and Antennascitations
  • 2020Mie Resonances in Water Spheres for Microwave Metamaterials and Antennascitations
  • 2020Continuous Heating Microwave System Based on Mie Resonances5citations
  • 2020Continuous Heating Microwave System Based on Mie Resonances5citations
  • 2019Mie Resonance-Based Continuous Heating Microwave Systemscitations
  • 2019Mie Resonance-Based Continuous Heating Microwave Systemscitations
  • 2019Fundamental Properties of Mie Resonances in Water Spheres1citations
  • 2019Fundamental Properties of Mie Resonances in Water Spheres1citations
  • 2019Fundamental Properties of Mie Resonances in Water Cylinders – TM and TE Case Studiescitations
  • 2019Fundamental Properties of Mie Resonances in Water Cylinders – TM and TE Case Studiescitations
  • 2018Effective Switching of Microwaves by Simple Water-Based Metasurfacescitations
  • 2018Effective Switching of Microwaves by Simple Water-Based Metasurfacescitations

Places of action

Chart of shared publication
Arslanagic, Samel
14 / 18 shared
Lavrinenko, Andrei V.
7 / 98 shared
Laurynenka, Andrei
6 / 14 shared
Chart of publication period
2023
2021
2020
2019
2018

Co-Authors (by relevance)

  • Arslanagic, Samel
  • Lavrinenko, Andrei V.
  • Laurynenka, Andrei
OrganizationsLocationPeople

document

Effective Switching of Microwaves by Simple Water-Based Metasurfaces

  • Jacobsen, Rasmus Elkjær
  • Lavrinenko, Andrei V.
  • Arslanagic, Samel
Abstract

Extensive efforts in the field of metamaterials (MMs) and metasurfaces (MSs) have recently enabled remarkable physics and devices capable of addressing several important scientific and technological challenges (N. Zheludev and Y. S. Kivshar, Nat. Mat., 11, 917-924, 2012; I. B. Vendik and O. G. Vendik, Techn. Phys., 58, 1-24, 2013; C. L. Holloway et al., IEEE Ant. Propagat. Mag., 54, 10-35, 2012; H.-T. Chen, A. J. Taylor, and N. Yu, Rep. Prog. Phys., 076401, 2016). Due to small material lossess, attention was particularly devoted to all-dielectric relatizations of MMs and MSs (S. Jahani and J. Zubin, Nat. Nanotechn., 11, 23-36, 2016). The profound properties of all-dielectric MMs and MSs are due to high-permittivity inclusions of appropriate shape situated in a low dielectric matrix. At microwave frequencies, usually barium strontium titanate was used to form the required inclusions. This ceramic material is rather costly, hard to form, and has limited dynamic properties. Massive practical applications require, however, simple and cheap solutions with highly tunable dynamic properties. To this end, pure water was recently proposed for the consideration in MM and MS design due to its low price, abundance, bio-friendly nature and highly tunable properties. Interesting mechanically and/or thermally tunable water-based MS designs were demonstrated (A. Andryieuski et al., Sci. Rep. 5, 13535, 2015; M. Odit et al., Appl. Phys. Lett. 109, 011901, 2016), and almost perfect waterbased absorbers were reported (Y. J. Yoo et al., Sci. Rep. 5, 14018, 2015; Q. Song et al., Adv. Opt. Mat. 5, 1601103, 2017). While these pioneering research efforts are significant, they mostly utilize inclusions which are not easy to make. In this work we build upon these initial efforts and present numerical (Comsol Multiphysics) and experimental (rectangular waveguide) results for a variety of microwave MSs based on very simple and easily made “rod-like” water elements in a dielectric Rohacell 51 HF matrix. An example of our results show how one orientation of the MS (vertical inclusions, Fig. 1, top-left) has a low transmittance, T, and thus blocks the incident waves (Fig. 1, middle), while its mechanical rotation by 90o (horizontal inclusions, Fig. 1, bottom-left) enhances the transmission and lowers the reflection, R (Fig. 1, right). In the presentation, we will also show how this behavior can be enhanced by stacking these MSs in free space, for which effective switching (on and off) of the waves emitted by a nearby dipole antenna is reported. We believe that the proposed water-based MSs may serve as easy-to-use, portable microwave sensors for quick and cheap identification and characterization of biological and chemical particles, and water micro-plastic contaminants.<br/>

Topics
  • impedance spectroscopy
  • polymer
  • inclusion
  • Strontium
  • mass spectrometry
  • ceramic
  • metamaterial
  • Barium