Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malureanu, Radu

  • Google
  • 51
  • 93
  • 268

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (51/51 displayed)

  • 2022Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assembly14citations
  • 2022Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assembly14citations
  • 2021Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterials13citations
  • 2020Plasmonic nanojet:an experimental demonstration31citations
  • 2020Microspherical nanoscopy: is it a reliable technique?7citations
  • 2020Microspherical nanoscopy: is it a reliable technique?7citations
  • 2020Plasmonic nanojet31citations
  • 2019Lamellas metamaterials: Properties and potential applicationscitations
  • 2019Lamellas metamaterials: Properties and potential applicationscitations
  • 2018Initial Investigation for the Fabrication of Hyperbolic Metamaterials Based on Ultra-Thin Au Layerscitations
  • 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?citations
  • 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?citations
  • 2017Advanced fabrication of hyperbolic metamaterialscitations
  • 2017Two-Photon Polymerization lithography for three-dimensional micro polymer parts manufacturing evaluationcitations
  • 2017Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles7citations
  • 2016Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Rangecitations
  • 2016Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elementscitations
  • 2015Ultra-thin Metal and Dielectric Layers for Nanophotonic Applications2citations
  • 2014Super-resolution near field imaging devicecitations
  • 2014Super-resolution near field imaging devicecitations
  • 2014Linear and nonlinear properties of chalcogenide glasses in the terahertz frequencycitations
  • 2014Nanoplasmonic solution for nonlinear opticscitations
  • 2013Terahertz-induced Kerr effect in amorphous chalcogenide glasses51citations
  • 2013Fabrication and characterization of transparent metallic electrodes in the terahertz domaincitations
  • 2013Fabrication and characterization of transparent metallic electrodes in the terahertz domaincitations
  • 2012Metamaterials modelling, fabrication, and characterisation techniquescitations
  • 2012Metamaterials modelling, fabrication, and characterisation techniquescitations
  • 2012Ultrabroadband terahertz spectroscopy of chalcogenide glasses55citations
  • 2012Metamaterials modelling, fabrication and characterisation techniquescitations
  • 2012Metamaterials modelling, fabrication and characterisation techniquescitations
  • 2011Enhanced broadband optical transmission in metallized woodpiles6citations
  • 2011Enhanced broadband optical transmission in metallized woodpiles6citations
  • 2011Wave impedance retrieving via Bloch modes analysiscitations
  • 2011Wave impedance retrieving via Bloch modes analysiscitations
  • 2011Wave propagation in structured materials as a platform for effective parameters retrievingcitations
  • 2011Ultrabroadband THz spectroscopy of disordered materialscitations
  • 2010Enhanced broadband optical transmission in metallized woodpilescitations
  • 2010Enhanced broadband optical transmission in metallized woodpilescitations
  • 2010Optimisation of the electroless metal deposition technique for use in photonicscitations
  • 2010Optimisation of the electroless metal deposition technique for use in photonicscitations
  • 2010Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles12citations
  • 2010Controlled Ag electroless deposition in bulk structures with complex three-dimensional profiles12citations
  • 2009Isotropic metal deposition technique for metamaterials fabricationcitations
  • 2009Nested structures approach for bulk 3D negative index materials:[invited]citations
  • 20093D geometrically isotropic metamaterial for telecom wavelengthscitations
  • 20093D geometrically isotropic metamaterial for telecom wavelengthscitations
  • 2009Bulk metamaterials: Design, fabrication and characterizationcitations
  • 2009Isotropic metal deposition technique for metamaterials fabricationcitations
  • 2009Bulk metamaterials: Design, fabrication and characterization:[invited]citations
  • 2009Nested structures approach for bulk 3D negative index materialscitations
  • 2008Accurate analysis of planar metamaterials using the RLC theorycitations

Places of action

Chart of shared publication
Caridad, José M.
2 / 5 shared
Andryieuski, Andrei
29 / 42 shared
Pizzocchero, Filippo
2 / 4 shared
Tang, Peter T.
2 / 5 shared
Hone, James
2 / 10 shared
Sørensen Jessen, Bjarke
1 / 2 shared
Kling, Jens
2 / 8 shared
Bøggild, Peter
2 / 46 shared
Petrone, Nicholas
2 / 3 shared
Whelan, Patrick Rebsdorf
1 / 12 shared
Gammelgaard, Lene
2 / 3 shared
Shivayogimath, Abhay
2 / 6 shared
Lavrinenko, Andrei V.
33 / 98 shared
Booth, Timothy
1 / 9 shared
Lavrinenko, Andrei
15 / 32 shared
Jessen, Bjarke S.
1 / 2 shared
Booth, Timothy J.
1 / 10 shared
Whelan, Patrick R.
1 / 12 shared
Pushkarev, Anatoly
1 / 5 shared
Masharin, Mikhail
1 / 1 shared
Makarov, Sergey
1 / 8 shared
Anoshkin, Sergey
1 / 1 shared
Tonkaev, Pavel
1 / 2 shared
Belov, Pavel
1 / 3 shared
Ponomarev, Dmitry S.
2 / 2 shared
Arsenin, Aleksey V.
2 / 8 shared
Khabibullin, Rustam A.
2 / 2 shared
Minin, Igor V.
2 / 2 shared
Yakubovsky, Dmitry I.
2 / 6 shared
Glinskiy, Igor A.
2 / 2 shared
Volkov, Valentyn S.
2 / 10 shared
Minin, Oleg V.
2 / 2 shared
Shkondin, Evgeniy
8 / 29 shared
Takayama, Osamu
8 / 32 shared
Novitsky, Andrey
7 / 13 shared
Laurynenka, Andrei
2 / 14 shared
Repän, Taavi
3 / 8 shared
Sukham, Johneph
4 / 4 shared
Lasson, Jakob Rosenkrantz De
1 / 9 shared
Gutsche, Philipp
2 / 14 shared
Wang, Fengwen
2 / 18 shared
Gregersen, Niels
2 / 21 shared
Breinbjerg, Olav
2 / 26 shared
Frandsen, Lars Hagedorn
2 / 19 shared
Kim, Oleksiy S.
2 / 23 shared
Moerk, Jesper
1 / 20 shared
Ivinskaya, Aliaksandra
6 / 18 shared
Häyrynen, Teppo
2 / 12 shared
Burger, Sven
2 / 16 shared
Sigmund, Ole
2 / 47 shared
De Lasson, Jakob Rosenkrantz
1 / 9 shared
Mørk, Jesper
1 / 17 shared
Jensen, Flemming
4 / 32 shared
Panah, Mohammad Esmail Aryaee
2 / 6 shared
Palima, Darwin
1 / 11 shared
Tosello, Guido
1 / 101 shared
Davoudinejad, Ali
1 / 7 shared
Kadkhodazadeh, Shima
1 / 23 shared
Raza, Søren
1 / 12 shared
Mortensen, N. Asger
1 / 30 shared
Gritti, Claudia
3 / 3 shared
Kardynal, Beata
1 / 1 shared
Mar, Mikkel Dysseholm
1 / 6 shared
Larsen, Pernille Voss
1 / 5 shared
Leandro, Lorenzo
1 / 6 shared
Rozlosnik, Noemi
1 / 6 shared
Zalkovskij, Maksim
12 / 16 shared
Strikwerda, Andrew
2 / 4 shared
Jepsen, Peter Uhd
10 / 46 shared
Iwaszczuk, Krzysztof
2 / 6 shared
Savastru, D.
1 / 1 shared
Popescu, A.
2 / 3 shared
Bache, Morten
1 / 6 shared
Lysenko, Oleg
1 / 1 shared
Savastru, A.
1 / 1 shared
He, Qiong
2 / 2 shared
Song, Zhengyong
2 / 2 shared
Zhou, Lei
2 / 18 shared
Savastru, Dan
6 / 7 shared
Popescu, Aurelian
6 / 6 shared
Bisgaard, Christer Zoffmann
1 / 1 shared
Kremers, Christian
2 / 2 shared
Chigrin, Dmitry
2 / 2 shared
Alabastri, A.
4 / 9 shared
Kiyan, R.
4 / 4 shared
Chichkov, B.
4 / 6 shared
Cheng, W.
4 / 4 shared
Ha, S.
3 / 4 shared
Kivshar, Y.
2 / 3 shared
Sukhorukov, A.
2 / 2 shared
Kivshar, Yu. S.
1 / 1 shared
Sukhorukov, A. A.
1 / 1 shared
Alabastri, Alessandro
2 / 7 shared
Chart of publication period
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008

Co-Authors (by relevance)

  • Caridad, José M.
  • Andryieuski, Andrei
  • Pizzocchero, Filippo
  • Tang, Peter T.
  • Hone, James
  • Sørensen Jessen, Bjarke
  • Kling, Jens
  • Bøggild, Peter
  • Petrone, Nicholas
  • Whelan, Patrick Rebsdorf
  • Gammelgaard, Lene
  • Shivayogimath, Abhay
  • Lavrinenko, Andrei V.
  • Booth, Timothy
  • Lavrinenko, Andrei
  • Jessen, Bjarke S.
  • Booth, Timothy J.
  • Whelan, Patrick R.
  • Pushkarev, Anatoly
  • Masharin, Mikhail
  • Makarov, Sergey
  • Anoshkin, Sergey
  • Tonkaev, Pavel
  • Belov, Pavel
  • Ponomarev, Dmitry S.
  • Arsenin, Aleksey V.
  • Khabibullin, Rustam A.
  • Minin, Igor V.
  • Yakubovsky, Dmitry I.
  • Glinskiy, Igor A.
  • Volkov, Valentyn S.
  • Minin, Oleg V.
  • Shkondin, Evgeniy
  • Takayama, Osamu
  • Novitsky, Andrey
  • Laurynenka, Andrei
  • Repän, Taavi
  • Sukham, Johneph
  • Lasson, Jakob Rosenkrantz De
  • Gutsche, Philipp
  • Wang, Fengwen
  • Gregersen, Niels
  • Breinbjerg, Olav
  • Frandsen, Lars Hagedorn
  • Kim, Oleksiy S.
  • Moerk, Jesper
  • Ivinskaya, Aliaksandra
  • Häyrynen, Teppo
  • Burger, Sven
  • Sigmund, Ole
  • De Lasson, Jakob Rosenkrantz
  • Mørk, Jesper
  • Jensen, Flemming
  • Panah, Mohammad Esmail Aryaee
  • Palima, Darwin
  • Tosello, Guido
  • Davoudinejad, Ali
  • Kadkhodazadeh, Shima
  • Raza, Søren
  • Mortensen, N. Asger
  • Gritti, Claudia
  • Kardynal, Beata
  • Mar, Mikkel Dysseholm
  • Larsen, Pernille Voss
  • Leandro, Lorenzo
  • Rozlosnik, Noemi
  • Zalkovskij, Maksim
  • Strikwerda, Andrew
  • Jepsen, Peter Uhd
  • Iwaszczuk, Krzysztof
  • Savastru, D.
  • Popescu, A.
  • Bache, Morten
  • Lysenko, Oleg
  • Savastru, A.
  • He, Qiong
  • Song, Zhengyong
  • Zhou, Lei
  • Savastru, Dan
  • Popescu, Aurelian
  • Bisgaard, Christer Zoffmann
  • Kremers, Christian
  • Chigrin, Dmitry
  • Alabastri, A.
  • Kiyan, R.
  • Chichkov, B.
  • Cheng, W.
  • Ha, S.
  • Kivshar, Y.
  • Sukhorukov, A.
  • Kivshar, Yu. S.
  • Sukhorukov, A. A.
  • Alabastri, Alessandro
OrganizationsLocationPeople

conferencepaper

Nanoplasmonic solution for nonlinear optics

  • Malureanu, Radu
  • Bache, Morten
  • Lysenko, Oleg
  • Lavrinenko, Andrei V.
Abstract

Nonlinear optical properties of dielectric waveguides are well known and are widely used in moderntelecommunication systems [1]. However, the fundamental law of diffraction imposes physical limitation for integration of dielectric photonics and semiconductor electronics [2]. A possible way to combine the high speed of a photonic device with the compact size of an electronic device is to produce ananoplasmonic device based on metal waveguides. The successful solutions can be used for future sustainable technologies. In meantime, nonlinear optics of metal waveguides is not fully understood and is being under investigation in recent years [3].The purpose of our research is to study nonlinear optical properties of gold waveguides embedded intodielectric medium (silicon dioxide) using picosecond laser spectroscopy. The work includes modeling ofoptical properties of gold waveguides, fabrication of prototype samples, and optical characterization ofsamples using a picosecond laser source.The prototype samples of gold waveguides embedded into silicon dioxide were fabricated at DTUDanchip. A silicon wafer with pre-made 6.5 μm layer of silicon dioxide was used as a substrate and goldwaveguides (films) with the thickness of 35 nm were deposited using the sputter-system (Lesker). The waveguides have different width in the range of 1 μm to 100 μm. A cladding layer of silicon dioxide ofabout 5 μm was deposited on top of the gold waveguides using the plasma-enhanced chemical vapor deposition (PECVD) method. The quality of samples was inspected using the optical microscope, scanningelectron microscope, atomic force microscope, and ellipsometer. The ready wafer was diced into several rectangular sliced with the fixed width of 15 mm and the different length from 2 mm to 6 mm for optical characterization in the laboratory.The samples were characterized using the picosecond laser source (NKT Photonics) with the peak wavelength of 1064 nm. The relevant spectra are shown on picture 1. The red curve corresponds to the reference measurement of the laser spectrum. The green curve is the transmission spectrum for the silicon dioxide cladding. The blue, cyan and magenta curves correspond to the transmission spectra for the gold waveguides with the width of 10 μm and length of 2, 3, and 4 mm.The polarization of laser beam was tuned to match the transverse magnetic mode of surface plasmonpolaritons in the gold waveguides.The propagation loss per unit length and coupling loss for the gold wave guides were calculated. The average propagation loss was 14 dB/mm and the average coupling loss was 6 dB. The obtained results showed a capability of the prototype samples to guide surface plasmon polaritons and their potential for the further investigation of nonlinear properties.

Topics
  • impedance spectroscopy
  • surface
  • semiconductor
  • gold
  • laser spectroscopy
  • Silicon
  • chemical vapor deposition