People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ryckeboer, Eva
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
Places of action
Organizations | Location | People |
---|
document
Long-wavelength silicon photonic integrated circuits
Abstract
In this paper we elaborate on our development of silicon photonic integrated circuits operating at wavelengths beyond the telecommunication wavelength window. Silicon-on-insulator waveguide circuits up to 3.8 mu m wavelength are demonstrated as well as germanium-on-silicon waveguide circuits operating in the 5-5 mu m wavelength range. The heterogeneous integration of III-V semiconductors and IV-VI semiconductors on this platform is described for the integration of lasers and photodetectors operating in the 2-3 mu m wavelength range. GeSn is proposed as an appealing approach to monolithically integrated long-wavelength detectors. Finally, nonlinear optics in silicon waveguide circuits beyond the two-photon absorption threshold is explored.