Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Łukaczyńska, Monika

  • Google
  • 4
  • 10
  • 74

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020The role of hydrogen bond donor and water content on the electrochemical reduction of Ni2+ from solvents - an experimental and modelling study15citations
  • 2019Electrodeposition of Nickel Based Nanostructures from Deep Eutectic Solvent / Water Mixtures As Electrocatalysts for the Oxygen Evolution Reactioncitations
  • 2019Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents59citations
  • 2016Influence of Applied Potential, Water Content and Forced Convection on the Electrodeposition of Ni Films on Steel from Choline Chloride Based Deep Eutectic Solventscitations

Places of action

Chart of shared publication
Ceglia, Andrea
2 / 5 shared
Mamme, Mesfin Haile
2 / 6 shared
Proft, Frank De
1 / 11 shared
Bergh, Krista Van Den
2 / 2 shared
Strycker, J. De
1 / 3 shared
Terryn, Herman
4 / 124 shared
Ustarroz, Jon
4 / 15 shared
Cherigui, El Amine Mernissi
2 / 9 shared
Strycker, Joost De
2 / 9 shared
Krista, Van Den Bergh
1 / 2 shared
Chart of publication period
2020
2019
2016

Co-Authors (by relevance)

  • Ceglia, Andrea
  • Mamme, Mesfin Haile
  • Proft, Frank De
  • Bergh, Krista Van Den
  • Strycker, J. De
  • Terryn, Herman
  • Ustarroz, Jon
  • Cherigui, El Amine Mernissi
  • Strycker, Joost De
  • Krista, Van Den Bergh
OrganizationsLocationPeople

document

Influence of Applied Potential, Water Content and Forced Convection on the Electrodeposition of Ni Films on Steel from Choline Chloride Based Deep Eutectic Solvents

  • Krista, Van Den Bergh
  • Strycker, Joost De
  • Łukaczyńska, Monika
  • Terryn, Herman
  • Ustarroz, Jon
Abstract

Electrochemically deposited Ni coatings are widely used in the aviation, automotive, telecommunication and electronic industry because of their unique mechanical, protective and decorative properties. These films are commonly deposited from aqueous electrolytes due to the simplicity and cost-effectiveness of the processes. However, the use of water-based baths is related to several issues, i.e. water reduction and hydrogen gas formation that lead to the formation of pores and cracks which result into more brittle coatings. A promising alternative to avoid these problems is to use non-aqueous electrolytes such as Deep Eutectic Solvents (DESs).<br/><br/>The feasibility of electroplating Ni and its alloys from choline chloride based DESs has been reported by several research groups [1–3]. In this context, recent studies have been focusing on the use of water as an additive. In most of the cases, just a small addition of water to those non-aqueous electrolytes is beneficial due to a decrease of viscosity and an increase of conductivity [3,4]. However, the electrocatalytic reduction of water during electrodeposition from DESs has also been shown to result into complex chemical and electrochemical processes that have a strong influence in the structure and morphology of the electrodeposited metallic phase [5].<br/><br/>Moreover, industrial electroplating processes are always carried out under forced convection to increase process efficiency and reduce deposition time. The interplay between electrodeposition kinetics and the mass transport of reactants and byproducts of the Ni electrodeposition from DESs has not been evaluated in detail yet. Similarly, the influence of applied potential on the structure and morphology of Ni coatings electrodeposited from DESs, as well as the effect on the electrochemical reduction processes are so far not fully understood.<br/><br/>In this presentation, we report on the inter-related effects of water content, applied potential and forced convection in Ni electrodeposition on steel from 1 choline chloride (ChCl): 2 urea (U) DESs. Electrochemical methods such as cyclic voltammetry (CV) and chronoamperommetry (CA) were combined with surface analysis techniques (field emission scanning microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy) in order to understand the occurring phenomena under both stagnant and forced convection conditions. The influence of mass transport on Ni electrodeposition process was studied by linear sweep voltammetry in combination with a rotating disk electrode (LSV-RDE).<br/><br/>The obtained results allowed a better understanding of the complex chemical and electrochemical processes occurring at the electrode surface depending on the mass transport conditions, applied potential and water content, which may result into the formation of NiO-OH and incorporation of DES decomposition by-products in the growing films.

Topics
  • impedance spectroscopy
  • pore
  • morphology
  • surface
  • phase
  • x-ray photoelectron spectroscopy
  • crack
  • steel
  • viscosity
  • Hydrogen
  • electrodeposition
  • Raman spectroscopy
  • cyclic voltammetry
  • decomposition
  • field-emission scanning electron microscopy