People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engberg, Sara Lena Josefin
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Advances in the one-step synthesis of 2D and 3D sulfide materials grown by pulsed laser deposition assisted by a sulfur thermal crackercitations
- 2022Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inkscitations
- 2022Tuning the band gap of CdS in CZTS/CdS solar cells
- 2022The effect of soft-annealing on sputtered Cu2ZnSnS4 thin-film solar cellscitations
- 2022A facile strategy for the growth of high-quality tungsten disulfide crystals mediated by oxygen-deficient oxide precursorscitations
- 2022Solution-processed CZTS and its n-layers
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barriercitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2018Liquid phase assisted grain growth in Cu2ZnSnS4 nanoparticle thin films by alkali element incorporationcitations
- 2017Investigation of Cu 2 ZnSnS 4 nanoparticles for thin-film solar cell applicationscitations
- 2017The effect of dopants on grain growth and PL in CZTS nanoparticle thin films for solar cell applications
- 2017Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications
- 2017Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films
- 2017Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cell applicationscitations
- 2017Spray-coated Cu2ZnSnS4 thin films for large-scale photovoltaic applications
- 2016High frequency pulse anodising of magnetron sputtered Al–Zr and Al–Ti Coatingscitations
- 2016Cu2ZnSnS4 Nanoparticle Absorber Layers for Thin-Film Solar Cells
- 2016Synthesis of ligand-free CZTS nanoparticles via a facile hot injection routecitations
- 2015Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells.
- 2015Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells.
- 2015Synthesis of large CZTSe nanoparticles through a two-step hot-injection methodcitations
- 2014Appearance of anodised aluminium: Effect of alloy composition and prior surface finishcitations
- 2014Annealing in sulfur of CZTS nanoparticles deposited through doctor blading
- 2014Study of Grain Growth of CZTS Nanoparticles Annealed in Sulfur Atmosphere
Places of action
Organizations | Location | People |
---|
conferencepaper
Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films
Abstract
We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user- and environmentally-friendly alkali metal chloride salts can be directly dissolved in controllable amounts. The homogeneous distribution of alkali metals in the ink allows uniform grain growth within the deposited absorber layer as a result of liquid phase assisted sintering.We find that particularly beneficial effects are seen by including potassium in the film. This produced micron-sized grains, an increased photoluminescence signal, and a bandgap of approx. 1.43 eV. The composition was Cu-poor and Zn-rich, and phase-pure kesterite CZTS was detected by Raman spectroscopy and X-ray diffraction (XRD) as well as an unquantifiable amount of ZnS. A Sono-tek spray-coating system is used which utilizes ultrasonic atomization. We investigate the effect of different binders, ink concentration, and spray-coating conditions, i.e. spray power, flow rate from syringe pump, distance between spray nozzle and the substrate, and time between consecutive spray layers for multiple layers. The spray-coated films are characterized by scanning electron microscopy (SEM), optical microscopy, and a Dektak profilometer.<br/>