People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luchinsky, Dmitry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Welding dynamics in an atomistic model of an amorphous polymer blend with polymer-polymer interfacecitations
- 2014Modeling wave propagation in sandwich composite plates for structural health monitoring
- 2013Self-organized enhancement of conductivity in biological ion channelscitations
- 2013Modeling wave propagation and scattering from impact damage for structural health monitoring of composite sandwich platescitations
- 2013Stochastic dynamics of remote knock-on permeation in biological ion channelscitations
- 2011High-fidelity modeling for health monitoring in honeycomb sandwich structurescitations
- 2011Comparisons of SHM sensor models with empirical test data for sandwich composite structures
- 2011Wave propagation and scattering in sandwich composite panels
- 2010Theoretical background and prognostic modeling for benchmarking SHM sensors for composite structures
Places of action
Organizations | Location | People |
---|
document
Theoretical background and prognostic modeling for benchmarking SHM sensors for composite structures
Abstract
<p>This paper reports on analytical as well as computer simulation of waves propagating in sandwich-type composite structures. Sandwich-type composites are being studied for use in NASA's new heavy lift launch vehicle, and flaw detection is crucial for safety and for failure prognostics. Theoretical analysis, as well as numerical modeling, is needed for benchmarking of available technologies for structural health monitoring (SHM) sensors and sensor systems. This benchmarking activity is important for answering the basic question of what minimum flaw size can be detected by the existing SHM based monitoring methods. Sandwich panels with foam, WebCore and honeycomb structures were considered for use in this study. Eigenmode frequency analysis and Frequency Response Analysis of the panels were made to understand fundamental properties of the panel physics and limitations that may affect the application of current SHM sensors and methods. An analytical study of the transient wave propagation is considered based on Mindlin plate theory. The mathematical model, accompanied by numerical simulations, shows that small size defects can be recognized but the frequency of waves should be sufficiently high. It is concluded that a combination of analytical results coupled with the high-fidelity simulations should make it possible to analyze experimental data and to predict the applicability of SHM methods for this type of structure.</p>