People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barrioz, Vincent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023A structural, optical and electrical comparison between physical vapour deposition and slot-die deposition of Al:ZnO (AZO)
- 2022Elimination of the carbon-rich layer in Cu2ZnSn(S, Se)4 absorbers prepared from nanoparticle inkscitations
- 2022Routes to Increase Performance for Antimony Selenide Solar Cells using Inorganic Hole Transport Layerscitations
- 2022Ex-situ Ge-doping of CZTS Nanocrystals and CZTSSe Solar Absorber Filmscitations
- 2022Exploring the Role of Temperature and Hole Transport Layer on the Ribbon Orientation and Efficiency of Sb2Se3 cells Deposited via Thermal Evaporation
- 2022Ex situ Ge-doping of CZTS nanocrystals and CZTSSe solar absorber films.citations
- 2022Recovery mechanisms in aged kesterite solar cellscitations
- 2020Innovative fabrication of low-cost kesterite solar cells for distributed energy applications
- 2019Solution processing route to Na incorporation in CZTSSe nanoparticle ink solar cells on foil substratecitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Temperature controlled properties of sub-micron thin SnS filmscitations
- 2018Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrayscitations
- 2017Effects of Cd 1-x Zn x S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVDcitations
- 2017A combined Na and Cl treatment to promote grain growth in MOCVD grown CdTe thin filmscitations
- 2016Sodium Induced Microstructural Changes in MOCVD-Grown CdTe Thin Films
- 2015MOCVD of SnSx thin films for solar cell application
- 2015Influence of CdCl2 activation treatment on ultra-thin Cd1−xZnxS/CdTe solar cellscitations
- 2014Investigation into ultrathin CdTe solar cell Voc using SCAPS modellingcitations
- 2014Investigation into ultrathin CdTe solar cellVocusing SCAPS modellingcitations
- 2014Cadmium Telluride Solar Cells on Ultrathin Glass for Space Applicationscitations
- 2013Developing Monolithically Integrated CdTe Devices Deposited by AP-MOCVD
- 2013Numerical simulation of the deposition process and the epitaxial growth of cadmium telluride thin film in a MOCVD reactorcitations
- 2011Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2010A feasibility study towards ultra-thin PV solar cell devices by MOCDV based on a p-i-n structure incorporating pyrite
- 2009Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illuminationcitations
- 2008The application of a statistical methodology to investigate deposition parameters in CdTe/CdS solar cells grown by MOCVDcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
A feasibility study towards ultra-thin PV solar cell devices by MOCDV based on a p-i-n structure incorporating pyrite
Abstract
FeSx layers were deposited onto aluminosilicate glass substrates over a temperature range of 180°C to 500°C using a horizontal AP-MOCVD reactor. Fe(CO)5 was used as the Fe source in combination with t-Bu2S2 or t-BuSH as S precursor to control the rate of reaction and film stoichiometry. The Fe and S partial pressures were kept at 7.5 x 103 and 3.0 mbar, giving a gas phase S/Fe ratio of 400. Reactions followed a non-Arrhenius relationship at higher temperatures. XRD revealed mixed FeSx phases in the layers, which consisted mainly of FeS and Fe1-xS. Post growth annealing of the FeSx films using S powder in a static argon atmosphere and temperatures ranging from 250°C to 400°C was carried out using a 30 minute soak time. Characterisation by XRD confirmed a transitional phase change to FeS2 for the S anneal at 400°C. These films were highly absorbing in the visible region of the solar spectrum, which extended into the NIR. Devices with a p-i-n structure were produced using either a sulphurised or non-sulphurised FeSx i-layer, and compared to p-n devices without an i-layer. A non-sulphurised p-i-n device had the best I-V results, which was attributed to reduced lateral inhomogeneity across the device relative to the thinner p-n device structures. Devices with sulphurised FeSx i-layers performed least efficiently which is suspected to be due to a less defined FeSx/CdS junction caused by severe conditions during the S annealing process.