Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Glückstad, Jesper

  • Google
  • 23
  • 24
  • 240

University of Southern Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (23/23 displayed)

  • 2022Light roboticscitations
  • 2022Light robotics:new micro-drones powered by lightcitations
  • 2019Optimization of 3D-printed microstructures for investigating the properties of the mucus biobarrier16citations
  • 2018Light Robotics for Nanomedicinecitations
  • 2018Light Robotics – a growing toolbox for biomedical researchcitations
  • 2018Optically fabricated and controlled microtool as a mobile heat source in microfluidicscitations
  • 2016Light‐driven Nano­‐robotics - Invited Plenary Presentation, IEEE NANO 2016citations
  • 2016Light‐driven Nano­‐robotics - Invited Plenary Presentation, IEEE NANO 2016.citations
  • 2013Structure-mediated nanoscopycitations
  • 2013New two-photon based nanoscopic modalities and optogeneticscitations
  • 2013A new nano-biophotonics toolboxcitations
  • 2012Laser trapping and spatial light modulatorscitations
  • 2012Towards Light‐guided Micro‐roboticscitations
  • 2012Wave-guided optical waveguides117citations
  • 2012Micromanipulation and microfabrication for optical microroboticscitations
  • 2012Optical Robotics in Mesoscopiacitations
  • 2012Light-driven nano-robotics for sub-diffraction probing and sensingcitations
  • 2012Mobile Waveguides: Freestanding Waveguides Steered by Lightcitations
  • 2011Functionalized 2PP structures for the BioPhotonics Workstation7citations
  • 2011Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper14citations
  • 2009Optically controlled three-dimensional assembly of microfabricated building blockscitations
  • 2009Optical microassembly platform for constructing reconfigurable microenvironment for biomedical studies86citations
  • 2007Vision feedback driven automated assembly of photopolymerized structures by parallel optical trapping and manipulationcitations

Places of action

Chart of shared publication
Jakobsen, Mogens Havsteen
1 / 8 shared
Bunea, Ada-Ioana
4 / 8 shared
Bañas, Andrew Rafael
11 / 11 shared
Engay, Einstom
3 / 7 shared
Chouliara, Manto
1 / 1 shared
Palima, Darwin
10 / 11 shared
Aabo, Thomas
3 / 3 shared
Vizsnyiczai, George
1 / 1 shared
Ormos, P.
2 / 2 shared
Kelemen, L.
2 / 2 shared
Kelemen, Lóránd
3 / 5 shared
Ormos, Pál
4 / 4 shared
Vizsnyiczai, Gaszton
2 / 3 shared
Nishi, Masayuki
1 / 2 shared
Tauro, Sandeep
2 / 2 shared
Miura, Kiyotaka
1 / 4 shared
Hirao, Kazuyuki
1 / 5 shared
Sakakura, Masaaki
1 / 3 shared
Matsuoka, Tomoyo
1 / 1 shared
Kelemen, Lorand
1 / 1 shared
Rodrigo, Peter John
3 / 4 shared
Alonzo, Carlo Amadeo
2 / 2 shared
Dam, Jeppe Seidelin
1 / 1 shared
Perch-Nielsen, Ivan Ryberg
1 / 1 shared
Chart of publication period
2022
2019
2018
2016
2013
2012
2011
2009
2007

Co-Authors (by relevance)

  • Jakobsen, Mogens Havsteen
  • Bunea, Ada-Ioana
  • Bañas, Andrew Rafael
  • Engay, Einstom
  • Chouliara, Manto
  • Palima, Darwin
  • Aabo, Thomas
  • Vizsnyiczai, George
  • Ormos, P.
  • Kelemen, L.
  • Kelemen, Lóránd
  • Ormos, Pál
  • Vizsnyiczai, Gaszton
  • Nishi, Masayuki
  • Tauro, Sandeep
  • Miura, Kiyotaka
  • Hirao, Kazuyuki
  • Sakakura, Masaaki
  • Matsuoka, Tomoyo
  • Kelemen, Lorand
  • Rodrigo, Peter John
  • Alonzo, Carlo Amadeo
  • Dam, Jeppe Seidelin
  • Perch-Nielsen, Ivan Ryberg
OrganizationsLocationPeople

document

Light‐driven Nano­‐robotics - Invited Plenary Presentation, IEEE NANO 2016

  • Glückstad, Jesper
Abstract

The synergy between nanotech, biotech and optics is spawning the emerging field of nanobiophotonics.Optics already hurdle the diffraction barrier for imaging with nanoscopic resolutions as celebrated by the Nobel Prize 2014 in Chemistry. However, scientifi c hypothesis testing demands tools, not only for observing nanoscopic phenomena, but also for reaching into and handling constituents in this size domain. Featured in Nature Photonics this author previously promoted the idea of fabricating a new class of Shape Optimized light robotic structures via two-photon polymerization (2PP) and pioneering their use in so-called lightdriven nano-robotics. Hence, the aim of our latest R&D is to combine advanced topology optimisation, 3D printing of functionalized materials and light manipulation to demonstrate a structure-mediated micro-tonano coupling paradigm for controlled operation of robotic tools overcoming the diffraction limit while still being optically visible and manoeuvrable. 2PP-fabrication can already today create intricate nano-features merged onto larger microstructures that, in turn, are steerable by dynamic light beams. Applying multiple independently controllable laser beam traps on these structures will enable real-time light-driven nanorobotics with six-degrees-of-freedom. This sets the stage for new discoveries using calibrated steering of optimally shaped and functionalized nano-tools at the subcellular level and in full 3D - not available in the scientifi c world as of today. 

Topics
  • impedance spectroscopy
  • microstructure