People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Glückstad, Jesper
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2022Light robotics
- 2022Light robotics:new micro-drones powered by light
- 2019Optimization of 3D-printed microstructures for investigating the properties of the mucus biobarriercitations
- 2018Light Robotics for Nanomedicine
- 2018Light Robotics – a growing toolbox for biomedical research
- 2018Optically fabricated and controlled microtool as a mobile heat source in microfluidics
- 2016Light‐driven Nano‐robotics - Invited Plenary Presentation, IEEE NANO 2016
- 2016Light‐driven Nano‐robotics - Invited Plenary Presentation, IEEE NANO 2016.
- 2013Structure-mediated nanoscopy
- 2013New two-photon based nanoscopic modalities and optogenetics
- 2013A new nano-biophotonics toolbox
- 2012Laser trapping and spatial light modulators
- 2012Towards Light‐guided Micro‐robotics
- 2012Wave-guided optical waveguidescitations
- 2012Micromanipulation and microfabrication for optical microrobotics
- 2012Optical Robotics in Mesoscopia
- 2012Light-driven nano-robotics for sub-diffraction probing and sensing
- 2012Mobile Waveguides: Freestanding Waveguides Steered by Light
- 2011Functionalized 2PP structures for the BioPhotonics Workstationcitations
- 2011Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shapercitations
- 2009Optically controlled three-dimensional assembly of microfabricated building blocks
- 2009Optical microassembly platform for constructing reconfigurable microenvironment for biomedical studiescitations
- 2007Vision feedback driven automated assembly of photopolymerized structures by parallel optical trapping and manipulation
Places of action
Organizations | Location | People |
---|
conferencepaper
Light Robotics for Nanomedicine
Abstract
Technological developments from recent years have led to the emergence of a new field, Light Robotics1, which explores intelligent optical actuation of microfabricated structures with tailored properties. As one of the pioneers in the field, our group develops microrobots for biomedical applications and advanced light sculpting techniques for their efficient optical manipulation. Two-photon polymerization enables direct laser writing of structures with a resolution of ~200 nm, which can be further improved to ~10 nm by post-processing or additional control over the printing process. In combination with surface modification via metal deposition or chemical functionalization, such microstructures can be tailored to specific applications for biomedical research purposes, such as localized mixing in microfluidic channels2. Light sculpting using methods from the Generalized Phase Contrast (GPC) family allows precise, simultaneous control of several microstructures with six degrees of freedom. Light-controlled microrobots have already shown potential for biomedical research by e.g. local material delivery and mixing, indirect manipulation of biological samples or in situ sample characterization. Our group focuses on further improving the fabrication process by bringing the microrobots closer to the nanoscale or by integrating multiple surface chemistries providing e.g. stealth, biological targetting or drug delivery functionalities. This would expand the applications of the 3D-printed microrobots, particularly for the manipulation and characterization of biological samples, bringing them a step closer towards becoming true ”microsurgeons”.