People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Erps, Jurgen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023VCSEL wavelength tunability using controlled mechanical strain
- 2021Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Designcitations
- 20203D direct laser writing of microstructured optical fiber tapers on single-mode fibers for mode-field conversioncitations
- 2018Ultrathin Poly-DL-Lactic Membranes for Corneal Endothelial Transplantation
- 2018Localized optical- quality doping of graphene on silicon waveguides through a TFSA- containing polymer matrixcitations
- 2016Replication of self-centering optical fiber alignment structures using hot embossingcitations
- 2016Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writingcitations
- 2016Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylatecitations
- 2016Optofluidic multi-measurement system for the online monitoring of lubricant oilcitations
- 2016Design and prototyping of self-centering optical single-mode fiber alignment structurescitations
- 2015Mould insert fabrication of a single-mode fibre connector alignment structure optimized by justified partial metallizationcitations
- 2013Low-coherence interferometry with polynomial interpolation on Compute Unified Device Architectur-enabled graphics processing units
- 2013Gloss, hydrophobicity and surface texture of papers with organic nanoparticle coatings
- 2013B-Calm: An open-source multi-GPU-based 3D-FDTD with multi-pole dispersion for plasmonics
- 2010Populating multi-fiber fiberoptic connectors using an interferometric measurement of fiber tip position and facet quality
- 2010Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnects
- 2008Hot embossing of microoptical components prototyped by deep proton writing
- 2008Embedded Micro-Mirror inserts for optical printed circuit boards
- 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modules
- 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modules
- 2006Laser Ablation of Parallel Optical Interconnect Waveguides
Places of action
Organizations | Location | People |
---|
document
Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modules
Abstract
One of the important challenges to prototype optical and micro-optical systems is the ability to include geometries with high enough optical surface quality. This generally means that the surface flatness and The resolution should be controlled within a sub-micrometer scale and that the resulting surface roughness should be only a fraction of the operating wavelengths. In our labs at the Vrije Universiteit Brussel we are therefore focusing on the continuous development of a rapid prototyping technology for the fabrication of micro-optical modules. In this technology, which we call Deep Proton Writing (DPW), we bombard polymer samples with micro-sized bundles (with diameters from 20 mu m to 300 mu m) of accelerated protons that have controllable energy between 5.5-16.5 MeV With this set-up we can sculpt structures with optical grade surfaces anywhere between 20 mu m and 1000 mu m thick. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical features which can be precisely integrated into more complex photonic systems. The DPW is furthermore compatible with low-cost mass-replication techniques such as micro injection moulding and hot embossing.