Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ottevaere, Heidi

  • Google
  • 16
  • 53
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2023Freeform beam shaping optics for large-size 3D scaffold fabrication with high accuracycitations
  • 2022Fabrication of large-scale scaffolds with microscale features using light sheet stereolithography12citations
  • 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatment15citations
  • 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC system7citations
  • 2018Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization37citations
  • 2018Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperatures8citations
  • 2016Determination of the radial profile of the photoelastic coefficient of polymer optical fiberscitations
  • 2016Optofluidic multi-measurement system for the online monitoring of lubricant oil1citations
  • 2016Chapter 21 – Biodegradable polyesters: from monomer to applicationcitations
  • 2015Algorithms for determining the radial profile of the photoelastic coefficient in glass and polymer optical fibres6citations
  • 2014On a possible method to measure the radial profile of the photoelastic constant in step-index optical fibercitations
  • 2013Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibrescitations
  • 2012Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensorcitations
  • 2008Functional polymer materials for optical applicationscitations
  • 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modulescitations
  • 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modulescitations

Places of action

Chart of shared publication
Nie, Yunfeng
2 / 2 shared
Madrid Sánchez, Alejandro
2 / 2 shared
Duerr, Fabian
2 / 2 shared
Thienpont, Hugo
13 / 83 shared
Nabizadeh, Mohaddese
1 / 5 shared
Goderis, Steven
1 / 3 shared
Terryn, Herman
2 / 124 shared
Boissy, Clement
1 / 1 shared
Baert, Kitty
1 / 23 shared
Hauffman, Tom
1 / 59 shared
Hara, Takeshi
1 / 1 shared
Futagami, Shunta
1 / 1 shared
Baron, Gino
1 / 12 shared
Desmet, Gert
1 / 12 shared
Malsche, Wim De
2 / 4 shared
Van Hemelrijck, Danny
1 / 126 shared
Dubruel, Peter
3 / 31 shared
Pelsmaeker, Jens De
1 / 1 shared
Van Vlierberghe, Sandra
3 / 27 shared
Graulus, Geert-Jan
3 / 6 shared
Van Hecke, Kristof
1 / 19 shared
Van Herck, Niels
1 / 1 shared
Devreese, Bart
1 / 1 shared
Van Driessche, Gonzalez
1 / 1 shared
Merken, P.
4 / 4 shared
Acheroy, S.
4 / 5 shared
Geernaert, Thomas
5 / 37 shared
Berghmans, Francis
4 / 45 shared
Mignani, A. G.
1 / 1 shared
Van Erps, Jurgen
3 / 21 shared
Vervaeke, Michael
3 / 7 shared
Callewaert, Manly Nestor
1 / 1 shared
Verschooten, Tom
1 / 1 shared
Ciacherri, L.
1 / 1 shared
Billiet, Thomas
1 / 1 shared
Mégret, Patrice
1 / 13 shared
Chah, Karima
1 / 10 shared
Tabak, Marc
1 / 1 shared
Nasilowski, Tomasz
1 / 11 shared
Volder, M. De
1 / 1 shared
Reynaerts, D.
1 / 2 shared
Daele, P. Van
1 / 5 shared
Steenberge, G. Van
1 / 5 shared
Dubruel, P.
1 / 8 shared
Schacht, E.
1 / 5 shared
Gijseghem, T. Van
1 / 1 shared
Hermanne, Alex
2 / 2 shared
Onate, Virginia Gomez
2 / 2 shared
Debaes, Christof
2 / 8 shared
Vynck, Pedro
2 / 2 shared
Overmeire, Sara Van
2 / 2 shared
Desmet, Lieven
2 / 2 shared
Krajewski, Rafal
1 / 2 shared
Chart of publication period
2023
2022
2021
2019
2018
2016
2015
2014
2013
2012
2008
2007

Co-Authors (by relevance)

  • Nie, Yunfeng
  • Madrid Sánchez, Alejandro
  • Duerr, Fabian
  • Thienpont, Hugo
  • Nabizadeh, Mohaddese
  • Goderis, Steven
  • Terryn, Herman
  • Boissy, Clement
  • Baert, Kitty
  • Hauffman, Tom
  • Hara, Takeshi
  • Futagami, Shunta
  • Baron, Gino
  • Desmet, Gert
  • Malsche, Wim De
  • Van Hemelrijck, Danny
  • Dubruel, Peter
  • Pelsmaeker, Jens De
  • Van Vlierberghe, Sandra
  • Graulus, Geert-Jan
  • Van Hecke, Kristof
  • Van Herck, Niels
  • Devreese, Bart
  • Van Driessche, Gonzalez
  • Merken, P.
  • Acheroy, S.
  • Geernaert, Thomas
  • Berghmans, Francis
  • Mignani, A. G.
  • Van Erps, Jurgen
  • Vervaeke, Michael
  • Callewaert, Manly Nestor
  • Verschooten, Tom
  • Ciacherri, L.
  • Billiet, Thomas
  • Mégret, Patrice
  • Chah, Karima
  • Tabak, Marc
  • Nasilowski, Tomasz
  • Volder, M. De
  • Reynaerts, D.
  • Daele, P. Van
  • Steenberge, G. Van
  • Dubruel, P.
  • Schacht, E.
  • Gijseghem, T. Van
  • Hermanne, Alex
  • Onate, Virginia Gomez
  • Debaes, Christof
  • Vynck, Pedro
  • Overmeire, Sara Van
  • Desmet, Lieven
  • Krajewski, Rafal
OrganizationsLocationPeople

document

Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modules

  • Ottevaere, Heidi
  • Hermanne, Alex
  • Van Erps, Jurgen
  • Onate, Virginia Gomez
  • Debaes, Christof
  • Vynck, Pedro
  • Overmeire, Sara Van
  • Vervaeke, Michael
  • Thienpont, Hugo
  • Desmet, Lieven
Abstract

One of the important challenges to prototype optical and micro-optical systems is the ability to include geometries with high enough optical surface quality. This generally means that the surface flatness and The resolution should be controlled within a sub-micrometer scale and that the resulting surface roughness should be only a fraction of the operating wavelengths. In our labs at the Vrije Universiteit Brussel we are therefore focusing on the continuous development of a rapid prototyping technology for the fabrication of micro-optical modules. In this technology, which we call Deep Proton Writing (DPW), we bombard polymer samples with micro-sized bundles (with diameters from 20 mu m to 300 mu m) of accelerated protons that have controllable energy between 5.5-16.5 MeV With this set-up we can sculpt structures with optical grade surfaces anywhere between 20 mu m and 1000 mu m thick. The strength of the DPW micro-machining technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical features which can be precisely integrated into more complex photonic systems. The DPW is furthermore compatible with low-cost mass-replication techniques such as micro injection moulding and hot embossing. <br/>With the DPW technology, we have prototyped various micro-optical structures that can be used in the domain of optical interconnects. In this article we report on: 1) two-dimensional fibre connectors, 2) out-of-plane couplers for optical waveguides embedded in Printed Circuit Boards (PCBs), 3) intra multichip-module (MCM) level optical interconnection via free space optical modules.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • strength
  • two-dimensional