People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baron, Gino
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Structure I methane hydrate confined in C8-grafted SBA-15citations
- 2023Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Devicecitations
- 2020Evaluation of particle and bed integrity of aqueous size-exclusion columns packed with sub-2 µm particles operated at high pressurecitations
- 2020Selection of binder recipes for the formulation of MOFs into resistant pellets for molecular separations by fixed-bed adsorptioncitations
- 2019Highly Robust MOF Polymeric Beads with a Controllable Size for Molecular Separationscitations
- 2019Exceptional HCl removal from Hydrogen gas by Reactive Adsorption on a Metal-Organic Framework
- 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC systemcitations
- 2017Gel-based morphological design of zirconium metal-organic frameworkscitations
- 2016The effect of crystal diversity of nanoporous materials on mass transfer studies
- 2015The role of crystal diversity in understanding mass transfer in nanoporous materialscitations
- 2015Poster: A comprehensive study of the macro- and mesopores size distributions of polymer monoliths using complementary physical characterization techniques
- 2015Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillerscitations
Places of action
Organizations | Location | People |
---|
document
Exceptional HCl removal from Hydrogen gas by Reactive Adsorption on a Metal-Organic Framework
Abstract
Small quantities of hydrogen chloride (HCl) are found in the hydrogen gas, obtained via traditional methods. Besides the contamination of the product stream, HCl causes corrosion, fouling and equipment damage leading to potentially serious safety and environmental issues. Thus, removal of HCl from the hydrogen gas is of great importance for the chemical industry. Here, we present a study on the removal of hydrogen chloride from hydrogen gas via adsorption on different adsorbents including zeolites, activated carbon and metal-organic frameworks (MOFs). The HCl removal performance of these adsorbents was studied by breakthrough experimentation with fixed-bed (dynamic) under high gas velocities (> 0.3 m/s), at high pressure (30 bar) and at room temperature, and with low HCl concentrations (< 200 ppm). The study revealed a MOF with an exceptional HCl adsorption capacity of 1.02 g/g, outperforming by far all traditional materials and other metal-organic framework previously tested. The characterization performed, via SEM-EDX, XRD and TGA, before and after the HCl contact unveiled the reaction nature of the adsorption mechanism, where the MOF undergoes a complete re-crystallization into a salt complex.