People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baere, Dieter De
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Experimental evaluation of the metal powder particle flow on the melt pool during directed energy depositioncitations
- 2023Comparison and Analysis of Hyperspectral Temperature Data in Directed Energy Depositioncitations
- 2020Spatial distributed spectroscopic monitoring of melt pool and vapor plume during the laser metal deposition processcitations
- 2019Hyperspectral and Thermal Temperature Estimation During Laser Claddingcitations
- 2019Analytical Modeling of Embedded Load Sensing Using Liquid-Filled Capillaries Integrated by Metal Additive Manufacturingcitations
- 2019On the Influence of Capillary-Based Structural Health Monitoring on Fatigue Crack Initiation and Propagation in Straight Lugscitations
- 2018Fatigue performance of powder bed fused Ti-6Al-4V component with integrated chemically etched capillary for structural health monitoring application.citations
- 2018Effective Structural Health Monitoring through the Monitoring of Pressurized Capillaries in Additive Manufactured Materials
- 2017Effect of Surface Roughness on Fatigue Crack Initiation in Additive Manufactured components with Integrated Capillary for SHM Application
- 2017Proof of Concept of Integrated Load Measurement in 3D Printed Structurescitations
- 2017Model-based temperature feedback control of laser cladding using high-resolution hyperspectral imagingcitations
- 2017Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring Systemcitations
- 2016Hardware-in-the-loop control of additive manufacturing processes using temperature feedbackcitations
- 2016Fatigue of Ti6Al4V Structural Health Monitoring Systems Produced by Selective Laser Meltingcitations
- 2016Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition processcitations
- 2016Evaluation of the Diffuse Reflectivity Behaviour of the Melt Pool During the Laser Metal Deposition Process
- 2016Assessment of eSHM system combining different NDT methods
- 2016Temperature Feedback Control of Laser Cladding Using High Resolution Hyperspectral Imaging
- 2015Modeling of laser beam and powder flow interaction in laser cladding using ray-tracingcitations
- 2015Feasibility study on integrated structural health monitoring system produced by metal three-dimensional printingcitations
- 2015Hardware-in-the-loop control of additive manufacturing processes using temperature feedback
- 2015Acoustic emission monitoring of crack propagation in titanium samples
- 2015Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition process
- 2014A combination of Additive Manufacturing Technologies and Structural Health Monitoring systems as an intelligent structure
- 2014Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing
- 2007Structural Health Monitoring of Slat Tracks using transient ultrasonic waves
Places of action
Organizations | Location | People |
---|
document
Acoustic emission monitoring of crack propagation in titanium samples
Abstract
Acoustic emission (AE) is a widely used non-destructive technique for real time monitoring. Over the past decades it has been used as an effective technique for the detection, characterization and location of fatigue cracks. The basic principle is based on the elastic energy emitted from crack propagation incidents under stress. The emitted elastic wave propagates through the continuous media and it is detected by sensors attached on the surface of the material. Fatigue cracks are one of the important damage phenomena in metallic structures in aerospace applications. Fatigue life under cyclic loading consists of three stages: stage I (crack nucleation), stage II (crack propagation) and stage III (failure). In this study, the fatigue crack propagation of Ti6Al- 4V four-point bending test specimens is studied during stage II. Two test specimens are used for this study, one corner notched sample and one unnotched sample. In order to monitor the crack propagation, two AE piezoelectric sensors are placed on one side of the specimen and crack propagation gauges are placed on the damage location areas as verification. The rate and the location of the recorded events is in good correlation to the crack growth rate and the position of the crack showing the potential of using AE for fatigue monitoring of this kind of test. Other AE parameters are also studied with respect to their efficiency for characterizing crack propagation, though care should always be taken for reflections and dispersion which inevitably distort the acoustic signals.