People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rantala, Juhani
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2023Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2021Creep properties of 9Cr and 14Cr ODS tubes tested by inner gas pressurecitations
- 2018Experimentally verified model based predictions for integrity of copper overpack:Annual report 2017
- 2018Experimentally verified model based predictions for integrity of copper overpack
- 2017Microstructural and mechanical characterization of ODS alloy produced by surface oxidation method
- 2016Multiaxial creep testing device for nuclear fuel claddings
- 2016Relaxation behaviour of copper in disposal canisters
- 2016Impression creep testing for the HAZ of a P22 weld
- 2016Creep performance of fuel cladding
- 2016Creep analyses of a steam pipe system
- 2015Material integrity of welded copper overpack:Annual report 2014
- 2015Material integrity of welded copper overpack
- 2013Creep damage and long term life modelling of an X20 steam line componentcitations
- 2013Practical application of impression creep data to power plant
- 2013Performance of copper overpack for repository canisters
- 2010Creep damage and long term life of steam line components
- 2010Mechanical performance and life prediction for canister copper
- 2010Creep damage and long term life of steam line components:Case X20
- 2009Modeling and verification of creep strain and exhaustion in a welded steam mixercitations
- 2008Modelling and verification of creep strain and exhaustion in a welded steam mixer
- 2008Creep damage, ductility and expected life for materials with defects
- 2007The LICON approach to life management
- 2001Modelling the development of creep damage:The licon experience
- 2001Modelling the development of creep damage
Places of action
Organizations | Location | People |
---|
document
The LICON approach to life management
Abstract
The prediction of long-term high-temperature materialproperties isdifficult when the prediction is based onnormal short to medium-termuniaxial creep test results.The test acceleration achieved by increasingeither testtemperature or stress or both, easily leads todeformationmechanism changes, which makes the predictionunreliable. In a short-termuniaxial laboratory test itis impossible to produce the same type of creepdamage asobserved in power plant components which have been inoperationfor more than 100 000 hours.An alternative method has been proposed based onusingmultiaxial test specimens. This concept was tested in theLICONproject (BE95-3019, 1996-2001), where thetheoretical basis of the method wasdeveloped andverified experimentally for three steels in base materialandwelded condition by using several differentmultiaxial laboratory specimensand full-size testcomponents. A typical test campaigne required to applythe methodology is a series of creep crack growth testson standard CTspecimens to 0.5 mm crack extension andtest durations between 1.000 and10.000 hours. Acomprehensive Code of Practice document was produced intheproject, and this will be published later in 2007.