People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rantala, Juhani
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2023Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2021Creep properties of 9Cr and 14Cr ODS tubes tested by inner gas pressurecitations
- 2018Experimentally verified model based predictions for integrity of copper overpack:Annual report 2017
- 2018Experimentally verified model based predictions for integrity of copper overpack
- 2017Microstructural and mechanical characterization of ODS alloy produced by surface oxidation method
- 2016Multiaxial creep testing device for nuclear fuel claddings
- 2016Relaxation behaviour of copper in disposal canisters
- 2016Impression creep testing for the HAZ of a P22 weld
- 2016Creep performance of fuel cladding
- 2016Creep analyses of a steam pipe system
- 2015Material integrity of welded copper overpack:Annual report 2014
- 2015Material integrity of welded copper overpack
- 2013Creep damage and long term life modelling of an X20 steam line componentcitations
- 2013Practical application of impression creep data to power plant
- 2013Performance of copper overpack for repository canisters
- 2010Creep damage and long term life of steam line components
- 2010Mechanical performance and life prediction for canister copper
- 2010Creep damage and long term life of steam line components:Case X20
- 2009Modeling and verification of creep strain and exhaustion in a welded steam mixercitations
- 2008Modelling and verification of creep strain and exhaustion in a welded steam mixer
- 2008Creep damage, ductility and expected life for materials with defects
- 2007The LICON approach to life management
- 2001Modelling the development of creep damage:The licon experience
- 2001Modelling the development of creep damage
Places of action
Organizations | Location | People |
---|
document
Modelling the development of creep damage
Abstract
Many plant components are designed for long termoperation at high temperature, where they are subjectedto creep damage. Development of creep damage in the formof creep cavitation and cracking can be an important signof expended life, but has been relatively tedious tostudy in laboratory environment. Consequently, materialcharacteristic signature of creep damage has been mostlyobtained from service exposed material from the plant.This is inconvenient particularly for new materials forwhich no long term testing data or service experience isavailable.The paper describes the LICON approach to induceservice-like creep cavitation damage through multiaxialloading of feature specimens. Examples are shown anddiscussed for parent and welded 9% chromium steels P91,P92 and E911, as well as for dissimilar welds of 2¼Cr-1Mo(P22). The results demonstrate that unlike thetraditional uniaxial testing, the selected approach canproduce appropriate creep cavitation damage inhigh-ductility steels within a reasonable time tocharacterise new materials and to support in-serviceinspections.