People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rantala, Juhani
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2023Crystal plasticity model for creep and relaxation deformation of OFP coppercitations
- 2021Creep properties of 9Cr and 14Cr ODS tubes tested by inner gas pressurecitations
- 2018Experimentally verified model based predictions for integrity of copper overpack:Annual report 2017
- 2018Experimentally verified model based predictions for integrity of copper overpack
- 2017Microstructural and mechanical characterization of ODS alloy produced by surface oxidation method
- 2016Multiaxial creep testing device for nuclear fuel claddings
- 2016Relaxation behaviour of copper in disposal canisters
- 2016Impression creep testing for the HAZ of a P22 weld
- 2016Creep performance of fuel cladding
- 2016Creep analyses of a steam pipe system
- 2015Material integrity of welded copper overpack:Annual report 2014
- 2015Material integrity of welded copper overpack
- 2013Creep damage and long term life modelling of an X20 steam line componentcitations
- 2013Practical application of impression creep data to power plant
- 2013Performance of copper overpack for repository canisters
- 2010Creep damage and long term life of steam line components
- 2010Mechanical performance and life prediction for canister copper
- 2010Creep damage and long term life of steam line components:Case X20
- 2009Modeling and verification of creep strain and exhaustion in a welded steam mixercitations
- 2008Modelling and verification of creep strain and exhaustion in a welded steam mixer
- 2008Creep damage, ductility and expected life for materials with defects
- 2007The LICON approach to life management
- 2001Modelling the development of creep damage:The licon experience
- 2001Modelling the development of creep damage
Places of action
Organizations | Location | People |
---|
report
Experimentally verified model based predictions for integrity of copper overpack
Abstract
In this annual report of the project “Experimentally verified model based predictions for integrity of copper overpack” (PRECO2017) the status of the experimental and modelling activities and results has been summarised up to the end of January 2018. The testing program and related activities have been continued and partly modified to support the assessment and verification of the long term integrity of the protective copper (Cu-OFP) overpack of the canister. To consider more discontinuous uniaxial behaviour, creep tests with stepwise increasing load and stress dips were conducted, and the results were compared with those from normal constant load creep testing. In general, the transients especially from stepwise increase in loading can consume a part of the deformation capacity and shorten creep (or creep-fatigue) life. The relaxation testing programme has continued with cyclic relaxation tests. The relaxation testing aims at developing a relaxation model for the FE calculation. It is expected that with the relaxation model the stress and strain distributions will be different when compared to the FE results with a traditional creep model only. The results of continuing multiaxial (notched bar) creep testing program suggest notch weakening, or life reduction by tensile multiaxiality. The 10.000h testing of a CT specimen from the modified welding (FSW) process with argon protective atmosphere is complete and the specimen is going to be investigated by metallography to study the behaviour of the oxide particles.